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Governments worldwide are increasingly turning to participatory budgeting (PB) as a tool for democratically

allocating limited budgets to public-good projects. In PB, constituents vote on their preferred projects from a

provided list via specially-designed ballots, and then an aggregation rule selects a set of projects whose total

cost fits within the budget. Recent work studies how to design PB ballot formats and aggregation rules that

yield outcomes with low distortion (informally, those with high social welfare). Existing bounds, however, rely

on strong assumptions that restrict voters’ latent utilities. We prove that low distortion PB outcomes can be

achieved without any assumptions on voters’ utilities by leveraging the established idea that voters can be

public-spirited: they may consider others’ interests alongside their own when when voting.

Flanigan et al. [2023] formally introduce the framework of distortion under public-spirited single-winner

voting, an important setting which can be viewed as the special case of PB where only a single project can be

funded. Before moving on to PB, we completely close the gaps in their results to derive tight bounds on the

optimal deterministic and randomized rules for this case.

Moving on to PB, we study various common ballot formats, such as rankings by value, rankings by value

for money, 𝑘-approvals, knapsack votes, and threshold approval votes. We prove that rankings by value

easily permit achieving distortion linear in the number of projects, and unfortunately, none of the other

common ballot formats can break that barrier. Our main contribution is to design a novel and highly practical

ballot format for PB which, we prove, allows achieving sublinear (and even logarithmic, if voting over two

rounds is possible) distortion in the number of projects. These distortion bounds are significantly lower than

those without public-spirited voting (even under restricted utilities), highlighting the potential of democratic

deliberation—a practice believed to cultivate public spirit, and which is commonplace in real-world PB— to

enable higher-welfare outcomes in PB elections.
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1 INTRODUCTION
Governments at all scales regularly face the question: With a limited budget, which public-good

projects — e.g., building bike paths or installing streetlamps— should they fund? To make such deci-

sions democratically, governments are increasingly using participatory budgeting (PB), in which

constituents vote on which projects they would like to see funded. In PB, the government supplies

a budget 𝐵 and a list of𝑚 potential projects 𝑎 ∈ {1, . . . ,𝑚} with corresponding costs 𝑐1, . . . , 𝑐𝑚 .

Voters submit their preferences via ballots, and then these ballots are aggregated via an aggregation

rule to select a set of projects to be funded, whose total cost must be at most 𝐵. PB is now used

all over the world to decide allocations of public funds
1
[De Vries et al., 2022, Participedia, 2023,

Wampler et al., 2021].

When designing the PB process described above, one goal that many consider important is

ensuring that the ultimate allocation of funds has high societal benefit. As have many others (e.g.,

Benadè et al. [2021]), we formalize the “societal benefit” of an allocation by its utilitarian social

welfare: the total utility it gives to all voters combined. In using this measurement, we adopt the

standard model of latent additive utilities: each voter 𝑖 has utility 𝑢𝑖 (𝑎) ∈ R⩾0 for each project 𝑎,

and their total utility for a set of projects 𝑆 being funded is 𝑢𝑖 (𝑆) =
∑

𝑎∈𝑆 𝑢𝑖 (𝑎). Then, the social
welfare of 𝑆 is equal to sw(𝑆) = ∑

𝑖∈𝑁 𝑢𝑖 (𝑆).
If voters’ utilities were observable, choosing the maximum-welfare allocation would amount

to solving the knapsack problem. However, in practice voters’ preferences can only be elicited

more coarsely through ballots. For example, popular ballot formats in PB include rankings by value,

where voters are asked to rank the individual projects, or 𝑘-approval votes, where voters are asked

to approve their favorite 𝑘 alternatives. It is not hard to see that such ballot formats lose far too

much information about voters’ utilities to allow deterministic selection of a high-welfare solution:

suppose there are two projects, 𝑎 and 𝑏, both costing 𝐵 so we must simply choose one or the other

to fund. If half the population has utilities 1, 0 for 𝑎, 𝑏 and the other half has utilities 0, 1000 for

𝑎, 𝑏 (so the welfare of 𝑏 is 1000 times that of 𝑎). Although 𝑏 has far higher social welfare, any

ordinal ballot format where voters only compare sets of alternatives will produce symmetric ballots,

leading to any deterministic aggregation rule—i.e., any deterministic mapping from 𝑛 ballots to

an allocation funds—to choose (without loss of generality) 𝑎; the best thing we can do here is to

randomize uniformly over the two options.

This example illustrates a prohibitive impossibility: in the worst case, any deterministic aggrega-

tion rule over any ordinal PB ballot format will select an outcome with arbitrarily sub-optimal social

welfare, simply because these PB ballot formats do not contain enough information about voters’

cardinal preferences. Formally, this sub-optimality is captured with the distortion: the worst-case

(over possible latent utilities) ratio of the best possible social welfare that of the outcome. Existing

work sidesteps this impossibility by assuming that each voter’s utilities are restricted to add up

to 1 [Benadè et al., 2021]. Although this permits bounded distortion in theory, it remains unclear

whether these bounds apply in practice: For example, this assumption may not hold in the likely

case that the public goods will more greatly impact lower-income constituents.

Fortunately, recent work by Flanigan et al. [2023] offers a source of hope: under unrestricted

utilities, they achieve low distortion in single-winner elections by leveraging the idea that voters

may be public-spirited: when casting their ballots, voters consider others’ interests in addition to

their own. While it is not clear that such behavior would be reliably present in the wild, as Flanigan

et al point out, research suggests that public spirit can be cultivated via democratic deliberation —

a practice that is already commonplace in PB elections [De Vries et al., 2022, Participedia, 2023]. The

possibility of cultivating public spirit among PB participants motivates our main research question:

1
See https://en.wikipedia.org/wiki/List_of_participatory_budgeting_votes for a list of use cases.

https://en.wikipedia.org/wiki/List_of_participatory_budgeting_votes
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Question: If voters are public-spirited, do there exist ballot formats and associated aggre-

gation rules that achieve small distortion, without any restrictions on voters’ utilities?

An affirmative answer to this question would suggest a practicable approach—democratic delib-

eration— to achieving higher-welfare outcomes in PB elections. In the process of pursuing this

question, we close an open question for the single-winner voting setting left open by Flanigan et al.

[2023], and introduce a new ballot format which makes better use of voters’ public spirit to break

an important distortion barrier in the PB context. We overview these contributions below.

1.1 Results and contributions.
We study the distortion of PB with public-spirited participants by adopting Flanigan et al. [2023]’s

model of public-spirited voting, extending it as needed to new ballot formats. In this model, each

voter 𝑖 evaluates each alternative 𝑎 not just according to her her own utility 𝑢𝑖 (𝑎), but by her

public-spirited (PS) value: the convex combination of her utility for 𝑎 and its social welfare. This

convex combination is weighted by her public spirit level 𝛾𝑖 ∈ [0, 1], where higher𝛾𝑖 means she more

strongly weighs the social welfare. As in Flanigan et al. [2023], our distortion bounds, summarized

in Tables 1 and 2, are parameterized by 𝛾min = min𝑖 𝛾𝑖 , the minimum public spirit level of any voter.

Contribution 1: Tight bounds for single-winner voting with ranking by value ballots.
Building directly from Flanigan et al. [2023], we begin by studying ranking-by-value ballots, where

voters rank the alternatives in [𝑚] in decreasing order of their public-spirited values. Before ana-

lyzing the performance of this ballot format in the PB context, we first study it in the single-winner

context— a significant strict restriction of the PB setting where all projects cost 𝐵. We begin with

the single-winner setting because, although this is precisely the setting studied by Flanigan et al,

there remain two important open questions, which we close in order to build upon their answers

later.

1.1 What is the best distortion achievable by any deterministic voting rule over ranking-by-value
ballots? The lowest-distortion voting rule identified by Flanigan et al is Copeland, achieving

constant (in𝑚) distortion of exactly (1 + 2(1−𝛾min )/𝛾min)2; in contrast, their results lead to a lower

bound on any deterministic rule of at most 1+ 2(1−𝛾min )/𝛾min. To close this gap, we design a nontrivial

construction to prove a stronger lower bound. This lower bound is tight to known upper bounds in

its dependency on both𝑚 and 𝛾min, thereby closing the question of what level of distortion is possi-

ble in single-winner public-spirited deterministic voting. This analysis reveals that in fact, the rule

Copeland is optimal (except when𝑚 is small relative to 1/𝛾min, in which case Plurality is optimal).

1.2 What is the best distortion achievable by any randomized voting rule over ranking-by-value

ballots? Flanigan et al. [2023] did not study randomized voting rules at all. Thus, here we must

prove lower and upper bounds anew. Our lower bound arises from the same construction as de-

scribed above. We identify a novel optimal voting rule for this case, whose distortion matches our

lower bound in both𝑚 and 𝛾min. Its distortion is Θ(min{𝑚, 1/𝛾min}), the best distortion possible in

single-winner public-spirited randomized voting.

Contribution 2: Distortion bounds for PB with ranking-by-value ballots. Next, we generalize
our results from the single-winner to the PB setting, again with the goal of identifying optimal

aggregation rules and proving matching lower bounds.

2.1 Lower bounds. First, we extend our lower bounds from the single-winner case to prove that in

PB, the distortion of any deterministic rule must be in Ω(𝑚/𝛾min), and that of any randomized rule

must be in Ω(log𝑚).
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2.2 Upper bounds via reductions from single-winner voting to PB. For both deterministic and random-

ized rules, we prove our upper bounds via direct reductions relating any voting rule’s distortion in

the single-winner setting to its performance in the PB setting. Such a reduction was previously

known for deterministic rules, incurring a factor of at most𝑚 in the distortion from single-winner

to PB. Via this method, we find that Copeland is again optimal as before, with distortion matching

our lower bound in both its dependency on𝑚 and 𝛾min.

For randomized rules, no such reduction existed, so we extend the previous reduction to the

randomized case. Via this reduction, we incur a factor of order at most log𝑚 in the distortion from

single-winner to PB. Then, we apply this reduction to give an upper bound on our single-winner

randomized rule above. In the PB setting, this voting rule achieves distortion with optimal depen-

dency on𝑚, and within a factor of at most 𝛾min of optimal dependency on 𝛾min.

Contribution 3: Approval-style ballot formats. A practically important type of ballot format in

the PB context are 𝑘-approval ballots. In our model, this means voters submit the set of 𝑘 alternatives

for which they have the highest public-spirited values. Due to their practical importance, we now

repeat our analysis for this entirely new ballot format. Our first key finding is that if 𝑘 is larger than

one or more maximal budget-feasible sets of projects, the distortion can be unbounded because

voters’ approval sets can be budget-infeasible, thus giving us no information about their preferences

over budget-feasible sets. This is clearly avoided when 𝑘 = 1; accordingly, we give matching lower

and upper bounds on the distortion of 1-approval ballots of Θ(𝑚2/𝛾min)
The issue of 𝑘-approval ballots permitting budget-infeasible approval sets motivates another

ballot format often considered in the PB literature— knapsack ballots. Knapsack ballots again allow

each voter to approve a set of items, but only if that set is budget-feasible. Perhaps the most striking

finding in our analysis of knapsack ballots is that while they have at best exponential distortion

Ω(2𝑚/
√
𝑚) under the unit sum utilities assumption, we show via a novel approach of comparing

entire subsets of alternatives that under public-spirited voting, these ballots have polynomial

distortion of at most order 𝑂 (𝑚3).

Contribution 4: Ballot formats that breaks the𝑚 distortion barrier. In the previous sections,

our lower bounds show us that across the ballot formats we study—plus two others whose analysis

we relegate to the appendix— no ballot format can achieve distortion with sublinear dependency on

𝑚 with deterministic aggregation rules (which is the practical case of interest). This barrier also exists

under the unit-sum utilities assumption [Benadè et al., 2021]. Motivated by this, we ask: is public

spirit powerful enough to permit a any practical ballot format to break this barrier?

We find that in fact, the answer is yes. We define a new, simple ballot format, which pre-partitions

the alternatives into (at most 𝑚) feasible sets of alternatives, and requires voters to rank them

rather than the individual alternatives. We show that by carefully bundling the alternatives in the

ballot, we can get 𝑂 (
√
𝑚/𝛾2

min
) distortion. If a second stage of elicitation is allowed, we show that

the distortion can be further reduced to 𝑂 (log𝑚/𝛾4
min

) using this ballot format. These results show

that our new ballot format is significantly more efficient, while also being thrifty and practical.

These results also point to the exciting open question of whether any ordinal ballot that only asks

voters to compare polynomially many sets of alternatives can reduce the distortion all the way

down to a constant.

1.2 Related work
Our work directly builds on the works of Benadè et al. [2021], who analyzed distortion in PB, and

Flanigan et al. [2023], who introduced the public-spirit model. Our results eliminate the unit-sum

assumption made in the former work, and generalize the latter work from single-winner elections
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Public-Spirit Unit-Sum

SW

Deterministic Θ (1/𝛾min ·min{𝑚, 1/𝛾min}) Θ(𝑚2)
Randomized Θ (min{𝑚, 1/𝛾min}) Θ(

√
𝑚)

PB

Deterministic Ω (𝑚/𝛾min), O (𝑚/𝛾min ·min{𝑚, 1/𝛾min}) Θ(𝑚2)
Randomized Ω (log𝑚), O (min{𝑚, (log𝑚)/𝛾min}) Ω(

√
𝑚), O

(√
𝑚 log𝑚

)
Table 1. Asymptotic (in𝑚,𝛾min) distortion bounds for rankings-by-value, comparing results for Single-winner

(SW) and Participatory Budgeting (PB) ballots. The unit-sum results are derived in Benadè et al. [2021] and

included for comparison.

Public-Spirit Unit-Sum

𝑘-approvals (𝑘 > 1) ∞ ∞
1-approval Θ

(
𝑚2/𝛾min

)
Θ(𝑚2)

Knapsack Ω (𝑚/𝛾min), O
(
𝑚3/𝛾2

min

)
Ω(2𝑚/√𝑚), O (𝑚2

𝑚)

Single Round rbp O
(√

𝑚/𝛾2

min

)
Ω(𝑚2)

Two Round rbp O
(
(log𝑚)/𝛾4

min

)
Ω(𝑚2)

Table 2. Asymptotic (in𝑚,𝛾min) deterministic distortion bounds across ballot formats other than ranking-by-

value. The colored rows indicate new ballots introduced in this paper. The unit-sum results are derived in

Benadè et al. [2021] and included for comparison.

(selecting a single alternative) to the more general problem of PB, where multiple alternatives are

selected subject to a budget constraint and there are multiple reasonable ballot formats to consider.

Procaccia and Rosenschein [2006] introduce the distortion framework in single-winner elections

under the unit-sum assumption. We now know that the best distortions achievable by deterministic

and randomized rules for this special case are Θ(𝑚2)[Caragiannis et al., 2017, Caragiannis and
Procaccia, 2011] and Θ(

√
𝑚) [Boutilier et al., 2015, Ebadian et al., 2022], respectively. Optimal distor-

tion bounds have also been identified for 𝑘-committee selection [Borodin et al., 2022, Caragiannis

et al., 2017], which still remains a special case of PB. As an alternative to the unit-sum assumption,

unit-range utilities or metric costs have been studied [Anshelevich et al., 2018, Filos-Ratsikas and

Miltersen, 2014], but all of these place some restriction on voter preferences. For further details, we

suggest the survey of Anshelevich et al. [2021].

Multiple approaches other than distortion have been studied for PB. The axiomatic approach has

been used to identify aggregation rules satisfying desirable axioms such as various monotonicity

properties Baumeister et al. [2020], Rey et al. [2020], Talmon and Faliszewski [2019]. Another

important consideration in PB is whether the allocation of funds is fair with respect to (groups

of) voters [Brill et al., 2023, Fain et al., 2018, Peters et al., 2021]. For further details, we suggest the

survey of Rey and Maly [2023] and the book chapter of Aziz and Shah [2021].

2 PRELIMINARIES
We introduce the most general framework of participatory budgeting (PB) first, and later introduce

single-winner and multiwinner voting as its special cases.

There is a set 𝑁 of 𝑛 voters and a set 𝐴 of𝑚 alternatives (projects). We denote voters by 𝑖, 𝑗 and

alternatives by 𝑎, 𝑏. There is a total budget of 𝐵, which is normalized to 1 without loss of generality,
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and a cost function 𝑐 : 𝐴 → [0, 1], where 𝑐 (𝑎) is the cost of 𝑎. Slightly abusing notation, we use

𝑐 (𝑆) =
∑

𝑎∈𝑆 𝑐𝑎 as the total cost of alternatives in 𝑆 . Let F = {𝑆 ⊆ 𝐴 : 𝑐 (𝑆) ⩽ 𝐵} be the set of
budget-feasible subsets of alternatives. The goal is to select such a budget-feasible subset by eliciting

and aggregating voter preferences.

Special cases.We note that 𝑘-committee selection is a special case of PB, where the cost of each

alternative is 1/𝑘, so F consists of all subsets of alternatives of size 𝑘 . We use “𝑘-committee rule” to

refer to a rule for this special case. Further, single-winner selection is a special case of 𝑘-committee

selection where 𝑘 = 1; we use “single-winner rule” to refer to a rule for this special case.

Utilities. Each voter 𝑖 ∈ 𝑁 has a utility for each alternative 𝑎 ∈ 𝐴 denoted by 𝑢𝑖 (𝑎) ∈ R⩾0.
Together, these utilities form a utility matrix𝑈 ∈ R𝑛×𝑚⩾0 . Define the social welfare of an alternative

𝑎 ∈ 𝐴 w.r.t. utility matrix 𝑈 as sw(𝑎,𝑈 ) = ∑
𝑖∈𝑁 𝑢𝑖 (𝑎); for a subset of alternatives 𝑆 ⊆ 𝐴, define

sw(𝑆,𝑈 ) = ∑
𝑎∈𝑆 sw(𝑎,𝑈 ). We use sw(𝑎) or sw(𝑆) when𝑈 is clear from context.

PS-values. Following the model introduced by Flanigan et al. [2023], we assume that each voter

𝑖 ∈ 𝑁 has a public spirit (PS) level 𝛾𝑖 ∈ [0, 1] and together these PS-levels form the PS-vector

®𝛾 ∈ [0, 1]𝑛 . Our results depend on the minimum public spirit level of the voters 𝛾min ≜ min𝑖∈𝑁 𝛾𝑖 .

Each voter submits her preferences according to not her personal utilities, but her PS-values,

which she computes by taking a 𝛾𝑖 -weighted convex combination of her personal utilities and the

average utility of all voters. Formally, the PS-value of voter 𝑖 for alternative 𝑎 is

𝑣𝑖 (𝑎) = (1 − 𝛾𝑖 ) · 𝑢𝑖 (𝑎) + 𝛾𝑖 · sw(𝑎)/𝑛.

Together, these PS-values form the PS-value matrix 𝑉®𝛾,𝑈 ∈ R𝑛×𝑚⩾0 . PS-values are additive across

alternatives, so that for each 𝑆 ⊆ 𝐴, 𝑣𝑖 (𝑆) =
∑

𝑎∈𝑆 𝑣𝑖 (𝑎).
Note that PS-values have the same scale as utilities because sw(𝑎) = ∑

𝑖∈𝑁 𝑢𝑖 (𝑎) =
∑

𝑖∈𝑁 𝑣𝑖 (𝑎)
for each 𝑎 ∈ 𝐴. We show that this transformation allows us to get rid of the unit-sum assumption

(

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) = 1,∀𝑎 ∈ 𝐴) required by much of the prior work [Benadè et al., 2021].

Elicitation. Since it is cognitively burdensome for voters to report numeric PS-values, it is common

to elicit their preferences using discrete ballots. Following the model of Benadè et al. [2021], a ballot

format X : R𝑚⩾0 × [0, 1]𝑚 → LX turns every PS-value function into a “vote”, which takes values

from a (usually finite) set LX, sometimes using the cost function over the alternatives. Under this

ballot format, each voter 𝑖 submits the vote 𝜌𝑖 = X(𝑣𝑖 ); together, these votes form the input profile

®𝜌 = {𝜌1, . . . , 𝜌𝑛}. We use 𝑉®𝛾,𝑈 ▷X ®𝜌 to indicate that PS-value matrix 𝑉®𝛾,𝑈 induces input profile ®𝜌
under ballot format X. Alternatively, we say that ®𝜌 is consistent with 𝑉®𝛾,𝑈 . We omit X when it is

clear from the context.

We study four ballot formats also studied by Benadè et al. [2021], namely rankings by value,

rankings by value for money, knapsack votes, and threshold approval votes, as well as a new ballot

format we introduce, namely ranking of predefined bundles; we define them in their respective

sections.

Aggregation Rules. Let Δ(F ) be the set of all distributions over F . A (randomized) aggregation

rule 𝑓 : L𝑛
X
× [0, 1]𝑚 → Δ(F ) for ballot format X takes an input profile ®𝜌 ∈ L𝑛

X
and a cost function

over alternatives 𝑐 ∈ [0, 1]𝑚 as input, and outputs a distribution over feasible sets of alternatives in

F . We say that 𝑓 is deterministic if its output always has singleton support.

Distortion. The distortion measures the efficiency of a voting system, composed of a ballot format

and an aggregation rule for that ballot format. For a ballot format X and minimum public spirit

level 𝛾min ∈ [0, 1], the distortion of an aggregation rule 𝑓 on input profile ®𝜌 in format X and cost
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function 𝑐 is the following worst-case ratio:

distX (𝑓 , ®𝜌, 𝑐) = sup

𝑈 ,®𝛾 :
min𝑖∈𝑁 𝛾𝑖=𝛾min,

𝑉®𝛾,𝑈 ▷ ®𝜌

max𝑆∈F sw(𝑆,𝑈 )
E𝑆 ′∼𝑓 ( ®𝜌 ) sw(𝑆 ′,𝑈 ) .

The (overall) distortion of 𝑓 is obtained by taking the worst case over all instances ( ®𝜌, 𝑐) and all 𝑛:

distX (𝑓 ) = sup

𝑛⩾1
sup

®𝜌∈L𝑛
X
, 𝑐∈[0,1]𝑚

distX (𝑓 , ®𝜌, 𝑐).

The resulting distortion is a function of 𝑚 and 𝛾min; we fix arbitrary 𝑚 ⩾ 2 and 𝛾min ∈ (0, 1]
throughout the paper. We are interested in the lowest distortion enabled by each ballot format,

across all aggregation rules for that ballot format. This is a measure of the usefulness of the

information contained in the ballot format for social welfare maximization.

Supporting results. Let us state a lemma that we use throughout the paper. This is a simple

generalization of Lemma 3.1 of Flanigan et al. [2023]; the proof is in Appendix C.1.

Lemma 1. Let 𝐴1, 𝐴2 ⊆ 𝐴 be two arbitrary subsets of alternatives. Fix any 𝛼 ⩾ 0 and define

𝑁𝐴1≻𝐴2
= {𝑖 ∈ 𝑁 : 𝛼 · 𝑣𝑖 (𝐴1) ⩾ 𝑣𝑖 (𝐴2)}. Then:

sw(𝐴2)
sw(𝐴1)

⩽ 𝛼 ·
(
1 − 𝛾min

𝛾min

𝑛��𝑁𝐴1≻𝐴2

�� + 1

)
.

Finally, for comparison, we remark that for all ballot formats we consider, when there is no public

spirit and the utilities are unrestricted, all deterministic voting rules have unbounded distortion

and the randomized rules have at best𝑚 distortion (Appendix C.2).

3 SINGLE-WINNER VOTING
As mentioned before, single-winner voting can be seen as a special case of participatory budgeting

problem in which all the alternatives have a cost equal to the budget, so only a single alternative

can be selected. Flanigan et al. [2023] analyze the distortion of various deterministic voting rules

for this single-winner case under public-spirited voting. In this section we give lower bounds on

the distortion of any deterministic and randomized voting rule in this setting, and also design

rules that match the lower bound. For the results in this section, we consider, as do Flanigan et al.

[2023], the prominent ballot format of rankings by value (rbv). In this ballot format, each voter

ranks the alternatives in a non-increasing order of her values for them. Formally, Lrbv is the set of

all rankings of the alternatives, and each voter 𝑖 submits a ranking 𝜌𝑖 ∈ Lrbv such that for every

𝑎, 𝑏 ∈ 𝐴 with 𝑣𝑖 (𝑎) > 𝑣𝑖 (𝑏), we have 𝑎 ≻𝜌𝑖 𝑏 (i.e., 𝑎 appears above 𝑏 in the ranking 𝜌𝑖 ); the voter

can break ties among equal-PS-valued alternatives arbitrarily.

3.1 Lower bounds
We start by proving the lower bound for the deterministic rules.

Theorem 1 (Lower Bound - Deterministic). Any deterministic single-winner voting rules 𝑓

with ranked preferences has distortion

dist𝑟𝑏𝑣 (𝑓 ) ⩾ 1 + 2

1 − 𝛾min

𝛾min

· 𝑚2

2𝛾min + 𝛾min𝑚
2 + (2 − 3𝛾min)𝑚

∈ Ω

(
1

𝛾min

·min

{
𝑚,

1

𝛾min

})
.

Proof Sketch. Our construction consists of𝑚 types of voters, equally distributed with 𝑛/𝑚
voters of each type. Let 𝑁𝑘 be the set of voters of type 𝑘 . Suppose each voter type votes as follows,
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𝑁1 : 𝑎1 ≻ 𝑎2 ≻ . . . ≻ 𝑎𝑚−1 ≻ 𝑎𝑚
𝑁2 : 𝑎2 ≻ 𝑎3 ≻ . . . ≻ 𝑎𝑚 ≻ 𝑎1
...

𝑁𝑚−1 : 𝑎𝑚−1 ≻ 𝑎𝑚 ≻ . . . ≻ 𝑎𝑚−3 ≻ 𝑎𝑚−2
𝑁𝑚 : 𝑎𝑚 ≻ 𝑎1 ≻ . . . ≻ 𝑎𝑚−2 ≻ 𝑎𝑚−1

so that 𝑁𝑖 prefers alternative 𝑎𝑖 most, and cycles through the rest. We use this instance to prove

the lower bound. □

The full proof can be found in Appendix D.1. We include the instance that gives this lower bound

here, because versions of it will be used to prove lower bounds throughout the paper. Using a

similar instance, we can prove a lower bound on the distortion of any randomized voting rule. The

full proof of this theorem is in Appendix D.2.

Theorem 2 (Lower Bound - Randomized). Any randomized single-winner voting rules 𝑓 with

ranked preferences has distortion

dist𝑟𝑏𝑣 (𝑓 ) ∈ Ω

(
min

{
𝑚,

1

𝛾min

})
.

3.2 Upper Bounds
In this section we focus on designing voting rules with distortion matching the lower bounds. First,

in the deterministic case, we give a deterministic voting rule that directly combines upper bounds

from Flanigan et al. [2023].

Corollary 1 (Upper Bound - Deterministic). The deterministic single-winner rule 𝑓𝑃𝐶 that runs

Plurality if𝑚 ⩽ 1/𝛾min and Copeland otherwise, has distortion at most

distrbv (𝑓PC) ⩽ min

{
𝑚

𝛾min

−𝑚,

(
2

𝛾min

− 1

)
2

}
∈ O

(
1

𝛾min

·min

{
𝑚,

1

𝛾min

})
.

Proof. Per Proposition 3.5 and Theorem 3.3 of Flanigan et al. [2023] respectively, distrbv (𝑓Plurality) ⩽
𝑚/𝛾min −𝑚 and that of distrbv (𝑓Copeland) ⩽ (2/𝛾min − 1)2. Thus, by defining the rule that chooses

the Plurality winner when𝑚 ⩽ 1/𝛾min and the Copeland winner otherwise, we can guarantee

achievement of the desired distortion. □

Now, we endeavor to find an optimal randomized voting rule. Since Flanigan et al. [2023] does

not study randomized rules, we cannot apply their bounds. Here, we turn to maximal lottery,

a randomized voting rule that was originally proposed by Kreweras [1965] and rediscovered

numerous times in the social choice literature [Fishburn, 1984, Fisher and Ryan, 1995, Laffond

et al., 1993, Rivest and Shen, 2010]. Curiously, Charikar et al. [2024] recently use this rule to derive

a breakthrough result in the related setting of metric distortion. There are various alternative

formulations of this rule, but the one most useful to us is the following.

Definition 1 (Maximal Lottery). Define the domination graph to be a directed graph𝐺 with alterna-

tives in 𝐴 as the vertices and an edge between every pair of vertices, oriented so that if 𝑎 beats 𝑏 in a

pairwise election, then the edge goes from 𝑎 to 𝑏. In the case of ties, we may pick orientation arbitrarily.

The maximal lottery rule returns a distribution 𝑝 over the vertices such that for any vertex 𝑣 ∈ 𝐴, the

probability of picking 𝑣 or a vertex adjacent to 𝑣 is at least 1/2. The existence of such a distribution can

be inferred from, e.g., Farkas’ lemma (see Theorem 2.4 of Harutyunyan et al. [2017]).
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Theorem 3 (Upper Bound - Randomized). There exists a randomized single-winner voting rule 𝑓

with distortion at most

distrbv (𝑓 ) ⩽ min{𝑚, 2(2/𝛾min − 1)} ∈ O
(
min

{
𝑚,

1

𝛾min

})
.

Proof. To match our piecewise lower bound, we must again decide between two voting rules:

the voting rule which chooses an alternative uniformly at random (thereby achieving𝑚 distortion)

and the maximal lottery rule, which we prove has distortion at most 2/𝛾min − 1.

Indeed, let 𝑎∗ be the optimal alternative. If we pick 𝑎∗ or an alternative 𝑏 that beats 𝑎∗ in a

pairwise election, by Lemma 1 we get distortion:

sw(𝑎∗)
sw(𝑏) ⩽ 2

1 − 𝛾min

𝛾min

+ 1.

Let the set of such alternatives be 𝐴′ = {𝑏 ∈ 𝐴 : | {𝑖 ∈ 𝑁 : 𝑏 ≻𝑖 𝑎
∗} | ⩾ 𝑛/2}. Then, the distortion of

our rule is:

sw(𝑎∗)∑
𝑎∈𝐴 𝑝 (𝑎)sw(𝑎) ⩽

sw(𝑎∗)∑
𝑎∈𝐴′ 𝑝 (𝑎)sw(𝑎) ⩽

sw(𝑎∗)
(min𝑎∈𝐴′ sw(𝑎))∑𝑎∈𝐴′ 𝑝 (𝑎)

⩽ 2

sw(𝑎∗)
min𝑎∈𝐴′ sw(𝑎) ⩽ 4

1 − 𝛾min

𝛾min

+ 2 =
4

𝛾min

− 2. □

Importantly, because 𝛾min is unobservable to the voting rule, implementing these piecewise

voting rules (for both the randomized and deterministic cases) is not quite practicable, ut the

intuition— that for small𝑚, Plurality is desirable, and for large𝑚, Copeland is better— is.

4 RANKINGS BY VALUE
We now move on to the more general setting of participatory budgeting (PB). To begin with, we

examine how powerful the same rankings by value ballot format is for PB. Note that while voters

still rank individual alternatives by value, the fact that a (feasible) set of alternatives can be funded

can significantly affect the power of this ballot format.

4.1 Deterministic Rules
First, we show that for rbv ballots, deterministic rules must incur a distortion at least (𝑚 − 1)𝛾−1

min
.

The intuition for this bound is as follows: PB is easy when cheap alternatives are always ranked

higher than costly ones, there is never any reason to pick the costly alternatives. So, to construct

hard instances, have voters rank costly alternatives highly.

Theorem 4 (lower bound). For rankings by value, every deterministic rule 𝑓 has distortion

distrbv (𝑓 ) ⩾
𝑚 − 1

𝛾min

∈ Ω

(
𝑚

𝛾min

)
.

Now,we showhow to build directly on results from the single-winner case to give optimal rules for

the much more general setting of PB. Specifically, to prove upper bounds, in both the deterministic

case and the randomized case, we show how to construct a PB rule from any deterministic single-

winner rule while losing an only a factor of𝑚 on the distortion.

Lemma 2 (Single-Winner → PB - Deterministic). For any 𝑑 ⩾ 1, any deterministic rule 𝑓 with

distortion 𝑑 in the single-winner case has distortion distrbv (𝑓 ) ⩽ 𝑚 · 𝑑 in participatory budgeting.
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Proof. Fix any instance and let 𝑓 return the singleton set {𝑎}. Let 𝐴∗
be an optimal budget-

feasible set. Then,

sw(𝐴∗)
sw(𝑎) =

∑︁
𝑎∗∈𝐴∗

sw(𝑎∗)
sw(𝑎) ⩽ 𝑚 · max

𝑎∗∈𝐴∗

sw(𝑎∗)
sw(𝑎) ⩽ 𝑚 · 𝑑. □

We now use this lemma to translate known results from the single-winner setting to PB. In single

winner elections, Flanigan et al. [2023] show that Plurality has distortion at most𝑚(𝛾−1
min

− 1) + 1

and Copeland’s rule has distortion at most

(
2𝛾−1

min
− 1

)
2

. Plugging these bounds into Lemma 2, we

conclude upper bounds for the PB setting:

Theorem 5 (upper bound). For rankings by value,

distrbv (𝑓Plurality) ⩽ 𝑚2 (𝛾−1
min

− 1) +𝑚, and

distrbv (𝑓Copeland) ⩽ 𝑚
(
2𝛾−1

min
− 1

)
2

.

Hence, there exists a deterministic rule 𝑓 with distortion

distrbv (𝑓 ) ∈ 𝑂

(
𝑚

𝛾min

·min

{
𝑚,

1

𝛾min

})
.

Remark 1. Note that there remains a gap between our upper and lower bounds (in Theorem 5 and

Theorem 4, respectively): Plurality achieves the optimal dependence on 𝛾min, Copeland achieves the

optimal dependence on𝑚, but neither achieves both. Also, the “best” rule in Theorem 5 is again a

piecewise rule that depends on 𝛾min to decide which of plurality and Copeland to execute. However, it

is unclear if a 𝛾min-agnostic rule can achieve the same (or even a better) distortion bound.

4.2 Randomized Rules
Theorem 6 (upper bound). For rankings by value, there exists a randomized rule 𝑓 with distortion

distrbv (𝑓 ) ⩽ 4

(
2

𝛾min

− 1

)
·
(
⌈log

2
(𝑚)⌉ + 1

)
∈ O

(
log(𝑚)
𝛾min

)
.

To prove this bound, we will derive another general-purpose reduction— this time for randomized

rules— from PB to 𝑘-committee selection (Lemma 3), and then from 𝑘-committee selection to

single-winner selection (Lemma 4). The first will suffers 𝑂 (log𝑚) overhead; the latter suffers none
(asymptotically). To apply this reduction, we want to plug in bounds on randomized single-winner

rules; unfortunately, no such results exist in the public spirit model.

In response, we give in Theorem 3 a novel randomized single-winner rule with asymptotically

optimal (in both𝑚 and 𝛾min) distortion of at most 4𝛾−1
min

− 2. We now state and prove these results

in succession, before applying them to prove Theorem 6.

Lemma 3 (Committee → PB - Randomized). Fix any 𝑑 ⩾ 1. If there exists a randomized 𝑘-

committee selection rule 𝑓𝑚′,𝑘 with distortion at most 𝑑 for each𝑚′ ⩽ 𝑚 and 𝑘 ∈ [𝑚′], then there

exists a randomized participatory budgeting rule 𝑓 for rankings by value with distortion at most

2𝑑 · ( ⌈log
2
(𝑚)⌉ + 1).

Proof. Fix any PB instance. Split the alternatives into buckets 𝐴0, 𝐴1, . . . , 𝐴⌈log
2
(𝑚) ⌉ , where

𝐴0 = {𝑎 ∈ 𝐴 : 𝑐𝑎 ⩽ 1/𝑚} and for 𝑖 ≠ 0, 𝐴𝑖 =
{
𝑎 ∈ 𝐴 : 2

𝑖−1/𝑚 < 𝑐𝑎 ⩽ 2
𝑖/𝑚

}
.

The randomized PB rule 𝑓 is as follows:

(1) Sample 𝑗 ∈
{
0, 1, . . . , ⌈log

2
(𝑚)⌉

}
uniformly.

(2) Consider the restricted instance with only the alternatives in 𝐴 𝑗 . That is, with𝑚
′ = |𝐴 𝑗 | and

𝑘 = min(𝑚′,
⌊
𝑚
2
𝑗

⌋
), use the 𝑘-committee selection rule 𝑓𝑚′,𝑘 to pick a set of 𝑘 alternatives and

return it.
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Let𝐴∗
be the optimal budget-feasible subset of the alternatives, 𝐿∗𝑗 be the optimal

⌊
𝑚
2
𝑗

⌋
-committee

of 𝐴 𝑗 , and 𝐿 𝑗 be the one selected by the 𝑘-committee rule. For 𝑗 ≠ 0, 𝐴∗ ∩𝐴 𝑗 is of size at most
𝑚
2
𝑗−1 .

That means sw(𝐴∗ ∩𝐴 𝑗 ) ⩽ 2sw(𝐿∗𝑗 ) for any 𝑗 ≠ 0.

In addition, for 𝑗 = 0, 𝐿∗
0
= 𝐴0 which implies sw(𝐴∗ ∩ 𝐴 𝑗 ) ⩽ sw(𝐿∗𝑗 ). Since the 𝑘-committee

selection rule has distortion of 𝑑 for any 𝑗 , we have sw(𝐿∗𝑗 ) ⩽ 𝑑sw(𝐿 𝑗 ), implying that sw(𝐴∗∩𝐴 𝑗 ) ⩽
2𝑑sw(𝐿 𝑗 ). Letting 𝛿 be the distribution of the mechanism output, we deduce the desired bound:

E𝐿∼𝛿 [sw(𝐿)] =
1

⌈log
2
(𝑚)⌉ + 1

⌈log
2
(𝑚) ⌉∑︁

𝑗=0

sw(𝐿 𝑗 )

⩾
1

⌈log
2
(𝑚)⌉ + 1

⌈log
2
(𝑚) ⌉∑︁

𝑗=0

sw(𝐴∗ ∩𝐴 𝑗 )
2𝑑

⩾
sw(𝐴∗)

2𝑑 (⌈log
2
(𝑚)⌉ + 1) . □

Next, we reduce 𝑘-committee selection to single-winner selection without any asymptotic

overhead. The idea is to simply add an alternative to the committee using the single-winner

randomized rule, then remove the selected alternative, and repeat the procedure 𝑘 times.

Lemma 4 (Single-Winner→ Committee). Fix any 𝑘 ∈ [𝑚] and 𝑑 ⩾ 1. If there exists a single-winner

rule with distortion at most 𝑑 for each𝑚′ ⩽ 𝑚, then there exists a 𝑘-committee selection rule with

distortion at most 𝑑 . The committee selection rule is deterministic if the underlying rule is deterministic,

and it is randomized if the underlying rule is randomized.

The deterministic case is proved in Theorem 8 of Goel et al. [2018]. Their key idea is to repeatedly

pick alternatives using the single winner rule 𝑘 times. We extend their result to the randomized

case using the same argument. We include the proof in Appendix E.2.

Having reduced the PB problem to that of single-winner selection, we now use the novel

randomized single-winner rule presented in Theorem 3 to prove the desired bound.

Proof of Theorem 6. Finally, we apply Lemmas 3 and 4 and theorem 3 to prove Theorem 6.

By Lemma 3, there exists a randomized single-winner rule (for any𝑚) that achieves distortion at

most 4𝛾−1
min

− 2. Thus, by Lemma 4, we get a randomized 𝑘-committee selection rule (for any𝑚 and

𝑘 ∈ [𝑚]) that achieves distortion at most 4𝛾−1
min

− 2. Finally, by Lemma 3, we get a randomized PB

rule with the desired distortion. □

We prove that this is asymptotically optimal as a function of𝑚 in Theorem 7, thereby proving

that our reduction is, in a sense, tight. Deriving the optimal dependence on 𝛾min is left as an open

question.

Theorem 7 (Lower Bound). For rankings by value, every randomized rule 𝑓 has distortion

distrbv (𝑓 ) ⩾ ln(𝑚)/2 ∈ Ω(log(𝑚)) .

Proof. Define 𝑘 =
⌈√

𝑚
⌉
− 1 and partition the alternatives into 𝑘 + 1 buckets 𝐴1, . . . , 𝐴𝑘 , 𝐵 such

that for ℓ ∈ [𝑘], 𝐴ℓ consists of ℓ alternatives with cost 1/ℓ each, and 𝐵 includes the rest of the

alternatives with cost 1 each. Note that each 𝐴ℓ is a feasible subset.

Suppose that all the voters have the same ranking where they rank every alternative in𝐴ℓ higher

than every alternative in 𝐴ℓ ′ for all ℓ < ℓ ′ (and breaks ties within each 𝐴ℓ arbitrarily), and rank

members of 𝐵 at the end of their ranking.

Consider any aggregation rule. For each 𝑎 ∈ 𝐴, let 𝑝𝑎 denote the marginal probability of

alternative 𝑎 being included in the distribution returned by the rule on this profile. For each ℓ ∈ [𝑘],
define 𝑝ℓ = 1

ℓ

∑
𝑎∈𝐴ℓ

𝑝𝑎 as the average of the marginal probabilities of alternatives in 𝐴ℓ being
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chosen. Since the rule returns a distribution over budget-feasible subsets of alternatives (with total

cost at most 1), the expected cost under this distribution is also at most 1. Due to additivity of cost

and linearity of expectation, the expected cost can be written as∑︁
𝑎∈𝐴

𝑝𝑎 · 𝑐𝑎 ⩾
∑︁
ℓ∈[𝑘 ]

(
1

ℓ

∑︁
𝑎∈𝐴ℓ

𝑝𝑎

)
=

∑︁
ℓ∈[𝑘 ]

𝑝ℓ ⩽ 1. (1)

Next, fix an arbitrary 𝑡 ∈ [𝑘]. Consider the following consistent utility function of the agent

(which, in this case, is also her PS-value function): 𝑣 (𝑎) = 𝑢 (𝑎) = 1 if 𝑎 ∈ ∪ℓ∈[𝑡 ]𝐴ℓ and 𝑣 (𝑎) = 𝑢 (𝑎) =
0 otherwise. It is evident that the budget-feasible subset with the highest social welfare (i.e., one

which contains the highest number of alternatives of value 1 to the agent) is 𝐴𝑡 , and sw(𝐴𝑡 ) = 𝑡 . In

contrast, using the additivity of the utility function over the alternatives and linearity of expectation,

we can write the expected social welfare under the rule as

∑
𝑎∈∪ℓ ∈ [𝑡 ]𝐴ℓ

𝑝𝑎 · 1 =
∑

ℓ∈[𝑡 ] ℓ · 𝑝ℓ , which
means the distortion is at least

𝐷𝑡 =
𝑡∑

ℓ∈[𝑡 ] ℓ · 𝑝ℓ
.

Because 𝑡 ∈ [𝑘] was fixed arbitrarily, we get that the distortion is at least 𝐷 = max𝑡 ∈[𝑘 ] 𝐷𝑡 . Our

goal is to show that 𝐷 = Ω(log𝑚).
Note that for each 𝑡 ∈ [𝑘], we have

𝑡∑
ℓ∈[𝑡 ] ℓ · 𝑝ℓ

⩽ 𝐷 ⇒
∑︁
ℓ∈[𝑡 ]

ℓ · 𝑝ℓ ⩾
𝑡

𝐷
.

Dividing both sides by 𝑡 (𝑡 + 1), we have that∑︁
ℓ∈[𝑡 ]

ℓ

𝑡 (𝑡 + 1) · 𝑝ℓ ⩾
1

𝐷 · (𝑡 + 1) ,∀𝑡 ∈ [𝑘] .

Taking the sum over 𝑡 ∈ [𝑘], the right hand side sums to (𝐻𝑘+1 − 1)/𝐷 . In the left hand side, the

coefficient of each 𝑝ℓ is

ℓ ·
𝑘∑︁
𝑡=ℓ

1

𝑡 (𝑡 + 1) = ℓ ·
(

𝑘∑︁
𝑡=ℓ

1

𝑡
− 1

𝑡 + 1

)
= ℓ ·

(
1

ℓ
− 1

𝑘 + 1

)
⩽ 1.

Hence, the left hand side sums to at most

∑
ℓ∈[𝑘 ] 𝑝ℓ ⩽ 1. Since the left hand side is at least the right

hand side, we have that

1 ⩾
𝐻𝑘+1 − 1

𝐷
⇒ 𝐷 ⩾ 𝐻𝑘+1 − 1 = 𝐻⌈√𝑚⌉ − 1,

which completes the proof after observing that 𝐻⌈√𝑚⌉ ⩾ ln(
⌈√

𝑚
⌉
) ⩾ ln(

√
𝑚) = 1

2
ln(𝑚). □

Remark 2 (Rankings by value-for-money). Another ranking-based ballot format considered in the

PB literature is rankings by value-for-money, which force voters to consider the cost-benefit analysis

of different alternatives, rather than just the benefits. In Appendix A, we give analogous upper and

lower bounds for this ballot format, showing unbounded deterministic distortion in Theorem 13, and

randomized distortion analogous to ranking by value O ( (log𝑚)/𝛾min) in Theorem 14. We demote this

ballot format to the appendix because it can be difficult for voters to compute, and in the deterministic

case it is bad; in the randomized case, it behaves similarly to pure rankings-by-value.
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5 APPROVAL-BASED BALLOTS
Another popular type of ballot — especially in participatory budgeting— is to ask voters to simply

approve their favorite items, rather than rank items relative to one another. The most common type

of approval-based ballots in practice is the 𝑘-approval ballot, in which voters “vote” by identifying

their 𝑘 favorite alternatives. However, this ballot format has an important limitation in the PB

context: as we show, it allows voters to approve items or sets of items that are not budget-feasible.

In the worst case, this can leave the voting rule with little or no information about which budget-

feasible allocations are desirable, in which case it can do nothing better than making an arbitrary

choice.

A natural potential fix for this is allowing voters to approve only sets of items that are budget-

feasible. This is can be achieved by either restricting our use to 1-approval ballots (and removing all

items which individually exceed the budget), or using Knapsack ballots, an approval-based ballot

format in which voters can approve any set of projects whose total cost does not exceed the budget.

We explore both these directions.

5.1 𝑘-approval ballots
For the ballot format 𝑘-approval (k-app), the set of possible ballots Lk-app is the set of all subsets

of size 𝑘 of 𝐴. That means each voter submits the set of her top 𝑘 alternatives (breaking the ties

arbitrarily). We start by showing that asking voters to approve more than one alternative leads to

an unbounded distortion.

Theorem 8 (LB - Deterministic). For 𝑘-approval ballot format with 𝑘 ⩾ 2, any deterministic PB

rule has unbounded distortion.

Proof. Suppose we are using 𝑘-approval ballots. Let 𝐴 be the alternatives, and suppose that

each 𝑎 ∈ 𝐴 has cost
1

𝑘−1 . Suppose all agents have the same utilities, where Y > 0 is arbitrarily small,

giving 1 utility to 𝑎1, Y utility for all of 𝑎2 . . . 𝑎𝑘 , and 0 for all𝐴\{𝑎1, . . . , 𝑎𝑘 }. Then, everyone’s public-
spirited values are identical to their utilities. All agents approve 𝑎1, . . . , 𝑎𝑘 , and the deterministic

rule must pick 𝑘 − 1 of these arbitrarily. Let the deterministic rule pick 𝑎2 . . . 𝑎𝑘 . The best possible

welfare is 𝑛, achieved by any 𝑘 − 1-subset including 𝑎1; the winner has welfare Y𝑛, making the

distortion
1

Y
(unbounded). □

These lower bounds were for 𝑘 ⩾ 2; one can also realize the same bounds with 𝑘 = 1, where all

voters approve items whose costs exceed 1, giving the voting rule no information about which

budget-feasible set to choose. However, an obvious fix for this is to remove all items ahead of time

that exceed the budget. If we assume every individual item has cost at most 1, then 1-approval

ballots ensure that voters can only approve budget-feasible sets, escaping the problem described

above. Then, 1-approval-based ballots are akin to plurality voting, and they permit the following

positive result:

Proposition 1 (UB, 1-app, Deterministic). If all alternatives have cost at most 1, then for 1-approval

ballot format, there exists a deterministic voting rule 𝑓 with distortion

dist1-app (𝑓 ) ∈ O
(
𝑚2

𝛾min

)
.

Proof. Pick themost approved alternative𝑎. This is in fact the plurality winner and by Theorem 5,

the plurality rule achieves the claimed distortion. □

The following proposition shows that this is the best we can hope for. The full proof of Proposi-

tion 2 is available in Appendix F.1.
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Proposition 2 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic rule 𝑓

has distortion

dist1-app (𝑓 ) ∈ Ω

(
𝑚2

𝛾min

)
.

Proof Sketch. Consider an instance with
𝑚
2
alternatives of cost 1 where each of them are

approved by
2

𝑚
voters. In addition the remaining

𝑚
2
alternatives have cost

𝑚
2
, and are never

approved by any voter, .

Any PB rule must pick one of the approved alternative, since otherwise we can take the under-

lying utility profile that gives the unapproved alternatives utility zero. In this case, we can make

unapproved alternatives to appear in the second to the𝑚/2 + 1-th position of every voter which

gives us the claimed bound. □

Remark 3. While not explicitly studied in Benadè et al. [2021], a deterministic distortion of Θ(𝑚2)
in the 1-approval ballot format follows from their analysis of the ranking by value ballot format

immediately, as it simply uses a plurality rule to aggregate voter preferences.

While 1-approval ballot sounds practical, it does not yield a good distortion since the basic

potential of PB (which is selecting multiple alternatives if the budget allows) is not used. However,

this is really the best we can hope for with 𝑘-approval ballots. This motivates the consideration of

knapsack ballots, which elicits the top budget-feasible subset from each voter’s perspective.

5.2 Knapsack ballots
For the ballot format knapsack (knap), the set of possible ballots Lknap = F is the set of all budget-

feasible subsets of 𝐴. Each voter 𝑖 submits the subset she values most: 𝜌𝑖 ∈ argmax𝑆∈F𝑣𝑖 (𝑆). This
amounts to asking each voter to solve her own personal knapsack problem.

Unfortunately, similar to what happens with 1-app ballots, an instance similar to the one in

Proposition 2 also applies to knapsack ballots, since voters are only permitted to approve budget-

feasible allocations, which all consist of one single item.

Corollary 2 (LB, knap, Deterministic). For knapsack ballot format, every deterministic rule 𝑓 has

distortion

distknap (𝑓 ) ⩾ 𝑚𝛾−1
min

−𝑚 + 1 ∈ Ω

(
𝑚

𝛾min

)
.

For randomized rules, we prove a slightly weaker lower bound that is 𝛾min times our lower bound

for deterministic rules. As 𝛾min goes from 0 to 1, the lower bound for deterministic rules goes from

unbounded to 1 while that for randomized rules goes from𝑚 to 1. It is easy to observe that both

lower bounds are tight at both extremes, but there may be room for improvement for intermediate

values of 𝛾min. The proof is in Appendix G.1.

Theorem 9 (LB, knap, Randomized). For knapsack ballot format, every randomized rules 𝑓 has

distortion

distknap (𝑓 ) ⩾ 𝑚(1 − 𝛾min) + 𝛾min .

This lower bound is trivially tight in𝑚. We show this by having𝑚 alternatives of cost 1 each,

and
𝑛
𝑚

voters approving each one.

Remark 4 (UB, knap, Randomized). The voting rule 𝑓 which ignores all the ballots and simply picks

a single alternative uniformly at random trivially yields an upper bound of distknap (𝑓 ) ⩽ 𝑚.
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Finally, we present upper bounds for knapsack due to its importance in the literature. In the

unit-sum model, Benadè et al. [2021] give exponential lower bounds for the knapsack ballot format.

We are able to prove that in the public-spirit model, it is possible to break this exponential barrier,

showing that the worst-case instances for knapsack in the unit-sum model rely on potentially

infeasible voter preferences. In doing so, we rely on new techniques for aggregating knapsack

votes. This illustrates how public spirit can be much more powerful than that pervasive assumption

(which is hard to justify) in mitigating distortion, especially when the number of alternatives is at

all large.

Theorem 10 (UB, knap, Deterministic). For knapsack votes, there exists a deterministic rule 𝑓

with distortion

distknap (𝑓 ) ⩽ 4𝑚3 (𝛾−2
min

− 𝛾−1
min

) + 3𝑚 ∈ 𝑂

(
𝑚3

𝛾2
min

)
.

Proof. For any subset of alternatives 𝑆 ⊆ 𝐴, let 𝑛𝑆 :=
∑

𝑖∈𝑁 I(𝑆 ⊆ 𝜌𝑖 ) be the number of voters

whose knapsack set contains 𝑆 . We use shorthand 𝑛𝑎 := 𝑛{𝑎} and 𝑛𝑎,𝑏 := 𝑛{𝑎,𝑏} for all 𝑎, 𝑏 ∈ 𝐴.

Then, informally, 𝑛𝑎,𝑏 is the number of voters who vote for both 𝑎 and 𝑏.

For an arbitrary input, define 𝐴0 := {𝑎 ∈ 𝐴 : 𝑛𝑎 ⩾
𝑛
2𝑚

} and initialize 𝐴− = 𝐴0 and 𝐴+ = ∅. We

will return 𝐴+
after running the following until 𝐴−

is empty:

(1) Remove the alternative 𝑏 with the highest cost in 𝐴−
and add it to 𝐴+

.

(2) Remove from 𝐴−
all alternatives 𝑎 such that

𝑛𝑎,𝑏

𝑛𝑏
⩽

𝑚 − 1

𝑚
.

First, we will prove that this algorithm always returns a budget-feasible subset. Suppose for the

sake of contradiction that at some point, the max-cost item in 𝐴−
, call it 𝑎m, is no longer within

budget: i.e., 𝑐𝑎m + ∑
𝑏∈𝐴+ 𝑐𝑏 > 1. We will show that there exists some 𝑏 ∈ 𝐴+

such that
𝑛𝑏,𝑎m

𝑛𝑏
⩽ 𝑚−1

𝑚
.

Let 𝑏m ∈ 𝐴+
be the first alternative added to 𝐴+

, so that it has maximum cost. Then, for all

𝑏 ∈ 𝐴+\{𝑏m}, because𝑏 wasn’t pruned in step 2 directly after adding𝑏m, it must be that
𝑛𝑏,𝑏m

𝑛𝑏m
> 𝑚−1

𝑚
.

By the same reasoning, the same must be true for 𝑎m — that is,
𝑛𝑎m,𝑏m

𝑛𝑏m
> 𝑚−1

𝑚
. Summing over these

inequalities, we get that:

𝑛𝑎m,𝑏m +
∑︁

𝑏∈𝐴+\{𝑏m }
𝑛𝑏m,𝑏 > 𝑛𝑏m

[
𝑚 − 1

𝑚
+ 𝑚 − 1

𝑚

(��𝐴+�� − 1

) ]
= 𝑛𝑏m

𝑚 − 1

𝑚

��𝐴+�� .
Notice that the left hand side is at most the number of voters who voted for 𝑏m, multiplied by

the number of other alternatives in {𝑎m} ∪ |𝐴+ | they could have voted for. Since {𝑎m} ∪𝐴+
is an

infeasible set, no voter could have voted for all of them. Thus, each voter can only vote for |𝐴+ |
alternatives in {𝑎m} ∪ |𝐴+ |, and so only |𝐴+ | − 1 alternatives other than 𝑏m. The left hand side is

then at most (|𝐴+ | − 1)𝑛𝑏m , and therefore

(
��𝐴+�� − 1)𝑛𝑏m > 𝑛𝑏m

𝑚 − 1

𝑚

��𝐴+�� .
Simplifying, we can see that this is impossible, as this is equivalent to the inequality:��𝐴+�� − 1 >

��𝐴+�� − ��𝐴+�� /𝑚.

We have encountered a contradiction, so our premise— that we added an 𝑎 to 𝐴+
that exceeded the

budget—must have been false.
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Now, we will show that if an 𝑎 ∈ 𝐴−
is pruned in Step 2, then

sw(𝑎)
sw(𝐴+ ) ⩽ 2𝑚2 1−𝛾min

𝛾min

+ 1. Indeed,

because we prune it, there exists some 𝑏 ∈ 𝐴+
such that:

𝑛𝑎,𝑏

𝑛𝑏
⩽

𝑚 − 1

𝑚
.

Since 𝑏 ∈ 𝐴0, we have 𝑛𝑏 ⩾ 𝑛/2𝑚 and so 𝑛𝑏 −𝑛𝑎,𝑏 , the number of voters that vote for 𝑏 but not 𝑎, is

at least 𝑛/(2𝑚2):
𝑛𝑏 − 𝑛𝑎,𝑏 ⩾ 𝑛𝑏 −

𝑚 − 1

𝑚
𝑛𝑏 ⩾

𝑛

2𝑚2
.

Notice that because we pick the highest cost alternative 𝑏 in each iteration, any alternative pruned

later by the algorithm must have a cost lower than 𝑐𝑏 . Therefore, any time a voter votes for 𝑏 but

not 𝑎, they could have replaced 𝑏 with 𝑎 and have gotten another feasible set. The fact that they

did not means that they prefer 𝑏 to 𝑎. We have at least 𝑛/(2𝑚2) of such voters (that prefer 𝑏 to 𝑎),

by Lemma 1 we can conclude that
sw(𝑎)
sw(𝐴+ ) ⩽ 2𝑚2 1−𝛾min

𝛾min

+ 1, as needed.

Extending this result, define𝑚0 := |𝐴0 |, we get that
sw(𝐴0)
sw(𝐴+) ⩽ 𝑚0

(
2𝑚2

1 − 𝛾min

𝛾min

+ 1

)
.

On the other hand, for alternatives outside of 𝐴0, the distortion must be small. Let 𝐴∗
be the

optimal budget-feasible set of alternatives. Then:

sw(𝐴∗ \𝐴0)
sw(𝐴+) =

sw(𝐴∗ \𝐴0)
sw(𝐴0)

· sw(𝐴0)
sw(𝐴+) .

It remains to bound
sw(𝐴∗\𝐴0 )
sw(𝐴0 ) . Because at most 𝑛/(2𝑚) voters include each alternative in 𝐴 \𝐴0

in their knapsack set, and there are at most 𝑚 − 𝑚0 such alternatives, we know that at most

𝑛(𝑚 −𝑚0)/2𝑚 voters vote for alternatives in 𝐴 \ 𝐴0, that is at least 𝑛(𝑚 +𝑚0)/2𝑚 voters only

vote for alternatives in 𝐴0. Observing that 𝐴∗ \ 𝐴0 ∈ F (since 𝐴∗ ∈ F ), it must be that for all

𝑛(𝑚 +𝑚0)/2𝑚 voters 𝑖 who vote for only alternatives in 𝐴0, 𝑣𝑖 (𝐴0) ⩾ 𝑣𝑖 (𝜌𝑖 ) ⩾ 𝑣𝑖 (𝐴∗ \𝐴0) for each
𝑎 ∈ 𝐴 \𝐴0. Therefore, by Lemma 1,

sw(𝐴∗ \𝐴0)
sw(𝐴0)

⩽
2𝑚

𝑚 +𝑚0

· 1 − 𝛾min

𝛾min

+ 1.

Thus,

sw(𝐴∗)
sw(𝐴+) ⩽

sw(𝐴0)
sw(𝐴+) +

sw(𝐴∗ \𝐴0)
sw(𝐴+) =

sw(𝐴0)
sw(𝐴+) +

sw(𝐴∗ \𝐴0)
sw(𝐴0)

· sw(𝐴0)
sw(𝐴+)

⩽
sw(𝐴0)
sw(𝐴+)

(
1 + 𝑚

𝑚0

· 1 − 𝛾min

𝛾min

+ 1

)
⩽ 𝑚0

(
2𝑚2

1 − 𝛾min

𝛾min

+ 1

) (
𝑚

𝑚0

· 1 − 𝛾min

𝛾min

+ 2

)
⩽ 2𝑚3

(
1 − 𝛾min

𝛾min

)
2

+ 4𝑚3
1 − 𝛾min

𝛾min

+𝑚 1 − 𝛾min

𝛾min

+ 2𝑚

⩽ 4𝑚3
(
𝛾−2
min

− 𝛾−1
min

)
+ 3𝑚. □

It’s possible that for general Knapsack voting, this cannot be improved to match the lower bound

that is achieved in the case that reduces to plurality voting. This is because in the general case

where people can approve more than 1 alternative, although we have budget-feasible information,

we don’t know what people’s favorite element is in their approval set if it is greater than size 1.
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Remark 5. For the special case of committee selection, we show in Appendix G.2 that this bound can

be improved to𝑚2 (𝛾−1
min

− 1) +𝑚 ∈ 𝑂
(
𝑚2/𝛾min

)
.

Remark 6 (Threshold approvals). Another approval-based ballot format considered in the literature

is threshold approvals, which are categorically different than knapsack and 𝑘-approvals: instead of

approving a limited set of alternatives, voters approve any alternative for which their utility exceeds a

certain threshold. In Appendix B, we give analogous upper and lower bounds for this ballot format.

For deterministic rules, we show unbounded deterministic distortion for a fixed choice of threshold

in Proposition 3 and Ω(𝑚) and O
(
𝑚2/𝛾min

)
distortion when the threshold is variable in Theorems 16

and 15. For randomized rules, we show Ω(
√
𝑚) with fixed thresholds and Ω(log𝑚) with variable

thresholds in Theorems 17 and 18 using the ideas in Benadè et al. [2021]. We demote this ballot format

to the appendix due to its limited practicability: even if people can assign internally-consistent numeric

values to their utilities, they may not consider their utilities on the same scale, making it hard for

people to reliably approve alternatives according a given threshold.

6 A THRIFTY ORDINAL BALLOT GETS SUBLINEAR DISTORTION
Let us revisit the story so far for deterministic aggregation rules, which is the more practical case.

Rankings by value allowed us to achieve 𝑂 (𝑚/𝛾2

min
) distortion, and approval-based ballots, which

could outperform rankings by value in the unit-sum model [Benadè et al., 2021], fail to do so in the

public spirit model, leaving our quest of achieving distortion sublinear in𝑚 (via a practical ballot

format) unfulfilled.

In this section, we introduce a new (family of) ballot format(s), ranking of predefined bundles

(rpb), which meets both these desiderata. Not only does it allow achieving sublinear distortion via

a deterministic aggregation rule, it is also extremely practical in participatory budgeting due to

four reasons:

• Explainable: It simply asks voters to rank bundles of projects by value instead of individual

projects.

• Ordinal: It asks voters to only ordinally compare bundles of projects.

• Thrifty: The number of bundles that voters rank is at most𝑚, making the number of bits of

information elicited from each voter polynomial in𝑚.

• Reduction to single-winner voting: The bundles we create below are budget-feasible (so voters

can realistically imagine them being implemented) and pairwise disjoint (so voters can easily

compare them). Further, the subset of projects funded in the end is precisely one of the bundles

on the ballot. This creates a reduction to single-winner voting, where voters understand that

they are effectively expressing preferences over possible final outcomes. This also opens up

the possibility of using well-known aggregation rules from single-winner voting (such as our

use of Copeland’s rule below), which voters may already be familiar with.

Specifically, an rpb ballot is characterized by a set P = {𝑃1, . . . , 𝑃ℓ } of ℓ feasible subsets of 𝐴. We

suggest that ℓ should be at most polynomial in𝑚. Thus, Lrpb(P) is the set of all rankings over P.

Each voter 𝑖 submits a ranking 𝜌𝑖 ∈ Lrpb(P) such that for all bundles 𝑃, 𝑃 ′ ∈ P with 𝑣𝑖 (𝑃) > 𝑣𝑖 (𝑃 ′),
we have 𝑃 ≻𝜌𝑖 𝑃

′
. An aggregation rule 𝑓 for this format gets ®𝜌 ∈ L𝑛

rpb(P) as input.

We show how to use the rpb ballot to achieve𝑂 (√𝑚/𝛾2

min
) distortion in a one-round voting system,

and an even better 𝑂 ( (log𝑚)/𝛾4

min
) distortion in a two-round voting system.

6.1 Sublinear Distortion in One Round
Let us describe our proposed voting system, which comprises of an rpb ballot we term high-low

bundling (HLB) along with a deterministic aggregation rule (Copeland’s rule).
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Ballot: rpb with high-low bundling (HLB). We initialize an rpb ballot with the set PHLB

constructed as follows. Let 𝐿 = {𝑎 ∈ 𝐴 : 𝑐 (𝑎) ⩽ 1/√𝑚} be the set of low-cost alternatives, and

𝐻 = {𝑎 ∈ 𝐴 : 𝑐 (𝑎) > 1/√𝑚} be the set of high-cost alternatives.PHLB
consists of an arbitrary partition

of 𝐿 into at most

√
𝑚 feasible bundles

2
and an arbitrary partition of 𝐻 into feasible bundles.

3
Note

that |P | ⩽ |𝐻 | + |𝐿 | =𝑚.
4
The voters are asked to rank the bundles in PHLB

, which generates an

input profile ®𝜌 .
Aggregation rule. We simply run Copeland’s rule on ®𝜌 , treating each bundle as an alternative in

single-winner voting, to select one of the feasible bundles as the final output.

Theorem 11 (Upper Bound). The distortion of (deterministic) Copeland’s aggregation rule 𝑓Copeland
applied to the HLB ballot is

dist
rpb(PHLB ) (𝑓Copeland) ⩽

2

√
𝑚

𝛾2
min

∈ O
( √

𝑚

𝛾2
min

)
.

Proof. Let 𝐴∗
be an optimal budget-feasible subset of alternatives. The elements of 𝐴∗

are

distributed among 𝐿 and𝐻 , so sw(𝐿∩𝐴∗) + sw(𝐻 ∩𝐴∗) = sw(𝐴∗), implying that either sw(𝐿∩𝐴∗) ⩾
1

2
sw(𝐴∗) or sw(𝐻 ∩ 𝐴∗) ⩾ 1

2
sw(𝐴∗). We claim that there exists a bundle 𝑃∗ ∈ PHLB

for which

sw(𝑃∗) ⩾ sw(𝐴∗ )
2

√
𝑚

.

Suppose sw(𝐿) ⩾ sw(𝐿∩𝐴∗) ⩾ 1

2
sw(𝐴∗). Since 𝐿 is partitioned into at most

√
𝑚 bundles in PHLB

,

there exists 𝑃∗ ∈ PHLB
such that sw(𝑃∗) ⩾ sw(𝐿)√

𝑚
⩾ sw(𝐴∗ )

2

√
𝑚

.

Next, suppose sw(𝐻 ∩𝐴∗) ⩾ 1

2
sw(𝐴∗). Since each alternative in 𝐻 ∩𝐴∗

has cost more than
1√
𝑚

and lies in the budget-feasible set 𝐴∗
, we have that |𝐻 ∩𝐴∗ | ⩽

√
𝑚. Thus, there exists an alternative

𝑎∗ ∈ 𝐻 ∩𝐴∗
with sw(𝑎∗) ⩾ sw(𝐻∩𝐴∗ )√

𝑚
⩾ sw(𝐴∗ )

2

√
𝑚

. Hence, for the bundle 𝑃∗ ∈ PHLB
containing 𝑎∗, we

have sw(𝑃∗) ⩾ sw(𝐴∗ )
2

√
𝑚

.

Note that Copeland’s rule receives rankings over bundles in PHLB
as input to pick a bundle 𝑃 .

Using its distortion bound (from single-winner voting), we know that

sw(𝑃) ⩾ 𝛾2
min

· sw(𝑃∗) ⩾ 𝛾2
min

· sw(𝐴
∗)

2

√
𝑚

,

yielding distortion at most
2

√
𝑚

𝛾2

min

∈ O
( √

𝑚

𝛾2

min

)
. □

Remark 7. In the unit-sum model of Benadè et al. [2021] (without public spirit), the distortion of any

deterministic aggregation rule on any rpb ballot remains Ω(𝑚2) due to single-winner instances (as a
special case of PB). When each bundle is budget-feasible, this creates precisely a single-winner instance.

And it is easy to see that grouping any two alternatives together can lead to infinite distortion if the

voters unanimously find that bundle the most preferable but we may pick the bad alternative in that

bundle which the voters have zero value for.

6.2 Logarithmic Distortion in Two Rounds
Next, we describe a two-round voting system, which beats even the sublinear distortion achieved

above and yields a logarithmic distortion.

2
This is possible because |𝐿 | ⩽𝑚 and any subset of

√
𝑚 alternatives from 𝐿 is feasible.

3
One can use this flexibility of partitioning 𝐿 and 𝐻 arbitrarily to make the resulting bundles meet practical desiderata, e.g.,

including a diverse set of projects. Alternatively, one can also create partitions of 𝐿 and 𝐻 into the fewest feasible bundles

to reduce the size of the ballot.

4
In practice, with many low-cost projects, we expect | P | to be much smaller.
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First ballot: rankings by value. Simply use the rankings by value ballot, where voters are asked

to rank the alternatives in 𝐴.

Second ballot: rpb with tiered-cost bundling (TCB). For 𝑟 ∈
{
0, 1, . . . ,

⌈
log

2
𝑚

⌉}
, define tiers of

costs as

𝑇𝑟 =

{
{𝑎 ∈ 𝐴 : 𝑐 (𝑎) ⩽ 1/𝑚} if 𝑟 = 0,{
𝑎 ∈ 𝐴 : 2

𝑟−1/𝑚 < 𝑐 (𝑎) ⩽ 2
𝑟/𝑚

}
if 𝑟 > 0.

For each 𝑟 ∈
{
0, 1, . . . ,

⌈
log

2
𝑚

⌉}
, use the committee selection rule from Lemma 4 to pick 𝑃𝑟 ⊆ 𝑇𝑟

of size 𝑡𝑟 = ⌊min( |𝑇𝑟 |,max(1,𝑚/2𝑟 ))⌋. Note that each 𝑃𝑟 is budget-feasible. Our rpb ballot in the

second stage is now defined by PTCB = (𝑃0, . . . , 𝑃⌈log
2
𝑚⌉ ). Each voter submits a ranking 𝜌𝑖 over

PTCB
.

Aggregation rule. Run (deterministic) Copeland’s rule on the input ®𝜌 and return the bundle

𝑃 ∈ PTCB
that it picks.

Theorem 12. The distortion of the two-round voting system that uses rankings by value, then the

rpb ballot with tiered-cost bundling, and then Copeland’s rule is at most 2(
⌈
log

2
𝑚

⌉
+ 1) ·

(
2𝛾−1

min
− 1

)
4

.

Proof. Let𝐴∗
be an optimal budget-feasible subset of the alternatives. Fix any 𝑟 ∈

{
0, 1, . . . ,

⌈
log

2
𝑚

⌉}
.

Let 𝑃∗
𝑟 be the optimal 𝑡𝑟 -sized subset of 𝑇𝑟 (note that this is feasible by the definition of 𝑡𝑟 ).

Using the distortion bound of the committee selection rule from Lemma 4, we have sw(𝑃∗
𝑟 ) ⩽(

2𝛾−1
min

− 1

)
2 · sw(𝑃𝑟 ). Since 𝐴∗

is feasible, |𝐴∗ ∩𝑇𝑟 | ⩽ 2𝑡𝑟 , so 𝐴∗ ∩𝑇𝑟 can be partitioned into two

feasible subsets of𝑇𝑟 of size at most 𝑡𝑟 each, yielding sw(𝐴∗∩𝑇𝑟 ) ⩽ 2·sw(𝑃∗
𝑟 ) ⩽ 2

(
2𝛾−1

min
− 1

)
2 ·sw(𝑃𝑟 ).

Since 𝑇0, . . . ,𝑇⌈log
2
𝑚⌉ partitions the set of alternatives 𝐴, we have

sw(𝐴∗) = ∑
𝑟 ∈{0,1,...,⌈log

2
𝑚⌉} sw(𝐴

∗∩𝑇𝑟 ) ⩽ 2(
⌈
log

2
𝑚

⌉
+1)

(
2𝛾−1

min
− 1

)
2 ·max𝑟 ∈{0,1,...,⌈log

2
𝑚⌉} sw(𝑃𝑟 ).

Using the distortion bound of Copeland’s rule, we have that for the bundle 𝑃 picked by the rule,

sw(𝑃) ⩾
max𝑟 ∈{0,1,...,⌈log

2
𝑚⌉} sw(𝑃𝑟 )(

2𝛾−1
min

− 1

)
2

⩾
sw(𝐴∗)

2(
⌈
log

2
𝑚

⌉
+ 1) ·

(
2𝛾−1

min
− 1

)
4
. □

We remark that there are no known lower bounds that prohibit one from achieving even constant

distortion using a one-round voting system that uses an rpb (or some other fully ordinal) ballot

format with only polynomially many comparisons. We leave this as a major open question that can

have implications for PB ballot design in practice.

7 DISCUSSION
Our work lays out several interesting open questions as in some cases, our upper and lower bounds

do not asymptotically match (see Tables 1 and 2) in either𝑚, 𝛾min or both.

Our work posits, based on prior research, that democratic deliberation in real-world PB may

cause voters to be public-spirited. However, modeling the exact level of public spirit achieved and

using this to in turn optimize the design of the deliberation process itself would be an important

direction for future research. More broadly, distortion has been studied in models beyond voting,

such as matching [Filos-Ratsikas et al., 2014] and fair division [Halpern and Shah, 2021], to which

the public-spirit model can also be applied. Finally, under the public-spirit model, participants take

the utilitarian welfare into account when submitting their preferences, which works well since the

goal is to optimize the utilitarian welfare as well. But the idea of distortion has been extended to

other objectives such as the Nash welfare or proportional fairness [Ebadian et al., 2022], which

raises the question: what form of public-spirit can be helpful in optimizing such objectives and

how can it be cultivated?
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APPENDIX
A RANKINGS BY VALUE FOR MONEY
In the ballot format rankings by value for money (vfm), Lvfm is still the set of all rankings over

alternatives, but now each voter 𝑖 submits a ranking 𝜌𝑖 of the alternatives by their PS-value divided

by cost, i.e., such that for every 𝑎, 𝑏 ∈ 𝐴, 𝑣𝑖 (𝑎)/𝑐 (𝑎) > 𝑣𝑖 (𝑏)/𝑐 (𝑏) implies 𝑎 ≻𝜌𝑖 𝑏; the voter can

break ties arbitrarily.

A.1 Deterministic Rules
Benadè et al. [2021] show that no deterministic rule for rankings by value for money can achieve

bounded distortion, even under the unit-sum assumption. Moreover, in their construction, all voters

submit the same ranking. Adding any amount of public spirit would therefore leave the rankings

and their analysis unchanged, implying that the distortion remains unbounded even with public

spirit. We formalize this in Theorem 13.

Theorem 13 (lower bound). For rankings by value for money, every deterministic rule 𝑓 has

unbounded distortion: distvfm (𝑓 ) = ∞.

Proof. We use the exact same construction used by Benadè et al. [2021]. Fix 𝑎, 𝑏 ∈ 𝐴, and let

𝑐𝑎 = Y > 0 and 𝑐𝑥 = 1 for all 𝑥 ∈ 𝐴 \ {𝑎}. Construct an input profile ®𝜌 where each voter has

alternatives 𝑎 and 𝑏 in positions 1 and 2, and let 𝑓 be some deterministic aggregation rule.

If 𝑓 ( ®𝜌, 𝑐) ≠ 𝑎, then construct a utility profile where 𝑢𝑖 (𝑎) = 1 and 𝑢𝑖 (𝑥) = 0 for all 𝑥 ∈ 𝐴 \ {𝑎}.
Then the distortion is infinite.

If 𝑓 ( ®𝜌, 𝑐) = 𝑎, then construct a utility profile where 𝑢𝑖 (𝑎) = Y, 𝑢𝑖 (𝑏) = 1 and 𝑢𝑖 (𝑥) = 0 for

𝑥 ∈ 𝐴 \ {𝑎, 𝑏}. Then,

𝑣𝑖 (𝑎)
𝑐𝑎

=
(1 − 𝛾𝑖 )Y + 𝛾𝑖 (𝑛Y )𝑛

Y
=

(1 − 𝛾𝑖 ) + 𝛾𝑖
1

=
𝑣𝑖 (𝑏)
𝑐𝑏

,

and so the ranking of each voter is consistent with this utility profile. But, the distortion is:

𝑛

𝑛Y
=
1

Y
,

which as Y → 0 tends to infinity. □

A.2 Randomized Rules
For randomized rules, we show the same upper bound (up to a constant) for rankings by value

for money as for rankings by value. The result uses a similar construction, too: First, we bucket

alternatives as in Lemma 3, so that the alternatives in each bucket differ in cost by a factor of at

most 2. Due to these similar costs, a ranking by value for money of the alternatives within any is

a good approximation of their ranking by value, allowing us to apply our reductions from PB to

committee selection to single-winner selection, except we lose an additional factor of 2.

Theorem 14 (upper bound). For rankings by value for money, there exists a randomized rule 𝑓

with distortion

distvfm (𝑓 ) ⩽ 8

(⌈
log

2
(𝑚)

⌉
+ 1

) (
2𝛾−1

min
− 1

)
.

Lemma 5. For rankings by value for money, there exists a 𝑘-committee-selection voting rule 𝑓 such

that on all sets of alternatives with costs in [2−ℓ , 21−ℓ ] for some ℓ ⩾ 0, 𝑓 has distortion 4(2𝛾−1
min

− 1) .

Proof. Notice that if 𝑎 beats 𝑏, then 𝑣𝑖 (𝑎)/𝑐𝑎 ⩾ 𝑣𝑖 (𝑏)/𝑐𝑏 at least 𝑛/2 times. Since the costs differ

by at most a factor of 2, 2𝑣𝑖 (𝑎) ⩾ 𝑣𝑖 (𝑏).
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We can use the exact same rule as in Theorem 3. Indeed, everything is the same, except that

when 𝑏 beats 𝑎∗ in a pairwise election (i.e. at least 𝑛/2 times), we get the following distortion by

Lemma 1:

sw(𝑎∗)
sw(𝑏) ⩽ 2

(
2

1 − 𝛾min

𝛾min

+ 1

)
.

Then, the distortion of our rule is, by the same analysis in Theorem 3:

8

1 − 𝛾min

𝛾min

+ 4.

From here, we can convert this single winner rule into a committee selection rule with the same

distortion by using Lemma 4. □

Having proved this lemma, we utilise an argument similar to Lemma 3.

Proof of Theorem 14. Let𝑔 be the rule in Lemma 5, and let the distortion it achieves,

(
4
1−𝛾min

𝛾min

+ 2

)
,

be 𝑑 . By the same mechanism in Lemma 3, we will convert 𝑔 to a ranking by value per cost rule.

Indeed, divide the alternatives into buckets 𝐴0, 𝐴1, . . . , 𝐴⌈log
2
(𝑚) ⌉ , where for 𝑖 ≠ 0:

𝐴𝑖 =

{
𝑎 ∈ 𝐴 :

2
𝑖−1

𝑚
< 𝑐𝑎 ⩽

2
𝑖

𝑚

}
,

and

𝐴0 = {𝑎 ∈ 𝐴 : 𝑐𝑎 ⩽ 1/𝑚}.

Recall the mechanism used:

(1) Pick the bucket 𝐴 𝑗 uniformly at random.

(2) Consider the restricted election with only the alternatives in 𝐴 𝑗 .

(3) Use 𝑔 to pick the top

⌊
𝑚
2
𝑗

⌋
alternatives in the restricted election.

Consider any PB instance. Split the alternatives into buckets 𝐴0, 𝐴1, . . . , 𝐴⌈log
2
(𝑚) ⌉ , where for

𝑖 ≠ 0:

𝐴𝑖 =
{
𝑎 ∈ 𝐴 : 2

𝑖−1/𝑚 < 𝑐𝑎 ⩽ 2
𝑖/𝑚

}
,

and

𝐴0 = {𝑎 ∈ 𝐴 : 𝑐𝑎 ⩽ 1/𝑚}.

The randomized PB rule 𝑓 is as follows:

(1) Pick 𝑗 ∈
{
0, 1, . . . , ⌈log

2
(𝑚)⌉

}
uniformly at random.

(2) Consider the restricted instance with only the alternatives in 𝐴 𝑗 .

(3) With 𝑚′ = |𝐴 𝑗 | and 𝑘 = min(𝑚′,
⌊
𝑚
2
𝑗

⌋
), use the 𝑘-committee selection rule 𝑓𝑚′,𝑘 on this

restricted instance to pick a set of 𝑘 alternatives and return it.

Let𝐴∗
be the optimal budget-feasible subset of the alternatives, 𝐿∗𝑗 be the optimal

⌊
𝑚
2
𝑗

⌋
-committee

of 𝐴 𝑗 , and 𝐿 𝑗 be the one selected by the 𝑘-committee rule. For 𝑗 ≠ 0, 𝐴∗ ∩𝐴 𝑗 is of size at most
𝑚
2
𝑗−1 .

That means sw(𝐴∗ ∩𝐴 𝑗 ) ⩽ 2sw(𝐿∗𝑗 ) for any 𝑗 ≠ 0.

In addition for 𝑗 = 0, 𝐿∗
0
= 𝐴0 which implies sw(𝐴∗ ∩ 𝐴 𝑗 ) ⩽ sw(𝐿∗𝑗 ). Since the 𝑘-committee

selection rule has distortion of 𝑑 for any 𝑗 we have sw(𝐿∗𝑗 ) ⩽ 𝑑sw(𝐿 𝑗 ) which gives us sw(𝐴∗∩𝐴 𝑗 ) ⩽
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2𝑑sw(𝐿 𝑗 ). Let 𝛿 be the distribution of the output of the mechanism, we have:

E𝐿∼𝛿 [sw(𝐿)] =
1

⌈log
2
(𝑚)⌉ + 1

⌈log
2
(𝑚) ⌉∑︁

𝑗=0

sw(𝐿 𝑗 )

⩾
1

⌈log
2
(𝑚)⌉ + 1

⌈log
2
(𝑚) ⌉∑︁

𝑗=0

sw(𝐴∗ ∩𝐴 𝑗 )
2𝑑

⩾
sw(𝐴∗)

2𝑑 (⌈log
2
(𝑚)⌉ + 1) ,

which gives us the desired distortion bound. □

Whether this is (asymptotically) the best distortion that randomized rules for rankings by value

for money can achieve remains an open question.

B THRESHOLD APPROVAL VOTES
Finally, we investigate the distortion under the ballot format of threshold approval votes. Under

this ballot format with threshold 𝜏 > 0 (𝜏-th), each voter 𝑖 reports the subset of alternatives

for which her PS-value is at least a 𝜏 fraction of her total PS-value for all alternatives in 𝐴, i.e.,

𝜌𝑖 = {𝑎 ∈ 𝐴 : 𝑣𝑖 (𝑎) ⩾ 𝜏 ·∑𝑏∈𝐴 𝑣𝑖 (𝑏)}. Thus, L𝜏-th = 2
𝐴
, as with knapsack votes. Benadè et al. [2021]

introduce this ballot format for unit-sum utilities and our definition extends it to arbitrary utilities.
5

It is easy to see that without a unit sum assumption, the distortion of any deterministic rule is

unbounded, even with public-spirited voters.

Proposition 3. The distortion associated with deterministic fixed thresholds (using the same definition

as in [Benadè et al., 2021]) is unbounded for any choice of threshold.

Proof. Suppose we use a threshold of 𝑡 . Then, consider an input profile where no voter approves

any alternative. Suppose that 𝑓 picks 𝑎∗ ∈ 𝐴. Then, consider a preference profile where 𝑢𝑖 (𝑎∗) = 0

and 𝑢𝑖 (𝑏) = 𝑡/2 for all 𝑖 ∈ 𝑁 and all 𝑏 ≠ 𝑎∗.

Then, 𝑣𝑖 (𝑎∗) = (1 − 𝛾𝑖 ) · 0 + 𝛾𝑖 · 0

𝑛
= 0 < 𝑡 and 𝑣𝑖 (𝑏) = (1 − 𝛾𝑖 ) · 𝑡/2 + 𝛾𝑖 · 𝑛𝑡/2𝑛

= 𝑡/2 < 𝑡 , meaning

the utility profile is consistent with the input, but the distortion is infinite. □

B.1 Deterministic Rules
By setting 𝜏 = 1/𝑚, we can achieve the following distortion upper bound.

Theorem 15 (upper bound). For threshold approval votes with threshold 𝜏 = 1/𝑚, there exists a

deterministic rule 𝑓 with distortion

dist(1/𝑚)-th (𝑓 ) ⩽ 𝑚
(
𝑚𝛾−1

min
−𝑚 + 1

)
.

Proof. We can use the voting rule that simply picks the plurality winner: the alternative with

most approvals. Let 𝑎 be the plurality winner.

Let 𝑆∗ be the optimal feasible subset of alternatives. Then, if voter 𝑖 approves alternative 𝑎:

𝑣𝑖 (𝑎)∑
𝑏∈𝐴 𝑣𝑖 (𝑏)

⩾ 1/𝑚,

and so:

𝑚𝑣𝑖 (𝑎) ⩾ 𝑣𝑖 (𝐴).
5
One could also conceive of using an absolute threshold (i.e., voter 𝑖 asked to approve all 𝑎 with 𝑣𝑖 (𝑎) ⩾ 𝜏 ), instead of

making it relative to the total value. But in Proposition 3, we show that this leads to the worst possible distortion: unbounded

for deterministic rules and𝑚 for randomized rules.
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Notice that every voter must approve at least one alternative, as at least one alternative must

have value at least the average:

∑
𝑎∈𝐴 𝑣𝑖 (𝑎)

𝑚
. Therefore, by the pigeonhole principle, the plurality

winner must appear at least 𝑛/𝑚 times, and so𝑚𝑣𝑖 (𝑎) ⩾ 𝑣𝑖 (𝐴) for at least 𝑛/𝑚 voters 𝑖 .

By Lemma 1,

sw(𝐴)
sw(𝑎) ⩽ 𝑚

(
1 − 𝛾min

𝛾min

𝑚 + 1

)
.

as claimed. □

As with rankings by value, it turns out that linear distortion is unavoidable, even when voters

exhibit perfect public spirit and submit the same vote.

Theorem 16 (lower bound). For all deterministic 𝑓 and all threshold values 𝜏 > 0,

dist𝜏-th (𝑓 ) ⩾ 𝑚 − 1.

Proof. Let 𝑡 > 0 be the threshold.

Consider the case where alternative 𝑎 costs 1, and alternatives 𝑏1, . . . , 𝑏𝑚−1 cost
1

𝑚−1 .
Suppose all voters approve only 𝑎. Then, we have two cases. If the voting rule 𝑓 doesn’t pick

alternative 𝑎, then we incur infinite distortion when the utility of 𝑎 is 1, and the utility of𝑏1, . . . , 𝑏𝑚−1
is 0 for all voters.

If 𝑓 does pick 𝑎, then it cannot pick anything else as the budget is exhausted. Let the utility of 𝑎

be 𝑡 + Y and the utility of 𝑏 𝑗 be 𝑡 − Y for all voters, and any small Y > 0.

Then, we could have gotten a utility of (𝑚 − 1) (𝑡 − Y), but instead get 𝑡 + Y. As Y → 0, the

distortion goes to𝑚 − 1. □

B.2 Randomized Rules
Turning to randomized rules for threshold approval votes with threshold 𝜏 , we get the same results

under public-spirited behavior with arbitrary utilities as Benadè et al. [2021] get under the unit-sum

assumption.

Theorem 17 (lower bound). For threshold approval votes with any threshold 𝜏 > 0, every

randomized rule 𝑓 has distortion

dist𝜏-th (𝑓 ) ⩾
1

2

(⌊√
𝑚

2

⌋
+ 1

)
.

Proof. We are borrowing the construction from Theorem 3.4 in Benadè et al. [2021]. Consider

the case where each alternative has cost 1. We consider two cases. First suppose that 𝜏 ⩽ 1/
⌊√

𝑚
⌋
.

Fix a set 𝑆 of

⌊√
𝑚/2

⌋
+ 1 alternatives. Construct the input profile ®𝜌 where 𝜌𝑖 = 𝑆 for all 𝑖 ∈ 𝑁 .

There must exist 𝑎∗ ∈ 𝑆 where Pr[𝑎∗] ⩽ 1/|𝑆 |. Consider the utility matrix 𝑈 where for all 𝑖 ∈ 𝑁 ,

𝑢𝑖 (𝑎∗) = 1/2 and for 𝑎 ∈ 𝑆 \ {𝑎∗}, 𝑢𝑖 (𝑎) = 2/
⌊√

𝑚/2
⌋
and 𝑢𝑖 (𝑎) = 0 for 𝑎 ∈ 𝐴 \ 𝑆 . Note that

since voters have identical utilities, we have 𝑢𝑖 (𝑎) = 𝑣𝑖 (𝑎) for any alternative 𝑎 ∈ 𝐴. We have

sw(𝑎∗) = 𝑛/2 and for 𝑎 ∈ 𝐴 \ {𝑎∗}, sw(𝑎) ⩽ 𝑛/
√
𝑚. That gives us

dist𝜏 -th(𝑓 ) ⩾
sw(𝑎∗)

E𝑎∼𝑓 ( ®𝜌,𝑐 ) [sw(𝑎)]

⩾
𝑛
2

1

⌊√𝑚/2⌋+1
𝑛
2
+ ⌊√𝑚/2⌋
⌊√𝑚/2⌋+1

𝑛√
𝑚

⩾
1

⌊√𝑚/2⌋+1 +
1

⌊√𝑚/2⌋+1
⩾

1

2

(⌊√
𝑚

2

⌋
+ 1

)
.
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On the other hand if 𝜏 > 1/
⌊√

𝑚
⌋
, construct the input profile ®𝜌 where 𝜌𝑖 = ∅ for 𝑖 ∈ 𝑁 . In this

case there exists 𝑎∗ ∈ 𝐴 where 𝑃𝑟 [𝑎∗] ⩽ 1/𝑚. Consider the utility matrix𝑈 where for every voter

𝑢𝑖 (𝑎∗) = 1/
⌊√

𝑚
⌋
and for 𝑎 ∈ 𝐴 \ {𝑎∗}, 𝑢𝑖 (𝑎) = (1 − 1/

⌊√
𝑚

⌋
)/(𝑚 − 1). We have sw(𝑎∗) = 𝑛/

⌊√
𝑚

⌋
,

and 𝑠𝑤 (𝑎) = 𝑛(1 − 1/
⌊√

𝑚
⌋
)/(𝑚 − 1) for 𝑎 ∈ 𝐴 \ {𝑎∗}. That gives us:

dist𝜏 -th(𝑓 ) ⩾
sw(𝑎∗)

E𝑎∼𝑓 ( ®𝜌,𝑐 ) [sw(𝑎)]

⩾

𝑛

⌊√𝑚⌋

1

𝑚
𝑛

⌊√𝑚⌋ + 𝑚−1
𝑚

𝑛

(
1− 1

⌊√𝑚⌋
)

𝑚−1

⩾
𝑚⌊√
𝑚

⌋ ⩾ ⌊√
𝑚

⌋
,

which gives us the desired bound. □

Benadè et al. [2021] consider an additional source of randomness, whereby the designer samples

a threshold 𝜏 from a distribution 𝑅 over support [0, 1], and then all voters are asked to submit

their threshold approval votes using this value of 𝜏 (same for all voters). We refer to this ballot

format as randomized threshold approval votes with threshold distribution 𝐷 (𝐷-rth). Note that

L𝐷-rth = L𝜏-th = 2
𝐴
. Since randomness is already introduced, it makes sense to also allow the

aggregation rule 𝑓 to be randomized in this case. When defining the distortion of a randomized

rule 𝑓 , we take expectation over the sampling of threshold 𝜏 (before taking any worst case).

Theorem 18 (lower bound). For randomized threshold approval votes with the threshold sampled

from any distribution 𝐷 , every randomized rule 𝑓 has distortion

dist𝐷-rth (𝑓 ) ⩾
1

2

⌈
log

2
(𝑚)

log
2
(2

⌈
log

2
(𝑚)

⌉
)

⌉
.

Proof. We are borrowing the construction directly from Theorem 3.6 in Benadè et al. [2021].

Consider the case where 𝑐𝑎 = 1 for all 𝑎 ∈ 𝐴, and let 𝑓 be an arbitrary rule that both returns a

threshold and a set of alternatives randomly.

Split up the (1/𝑚, 1] interval into
⌈
log

2
(𝑚)/log

2
(2 log

2
(𝑚))

⌉
parts 𝐼 𝑗 defined such that

𝐼 𝑗 =

( (2 log
2
(𝑚)) 𝑗−1

𝑚
,min

{ (2 log
2
(𝑚)) 𝑗

𝑚
, 1

}]
.

Define 𝑢 𝑗 and ℓ𝑗 to be the largest and smallest points in 𝐼 𝑗 respectively. By construction, 𝑢 𝑗 ⩽
2 log

2
(𝑚)ℓ𝑗 for all 𝑗 .

The key idea is to give utilities to alternatives within the interval that the threshold with least

probability is contained in, so that with high probability, the alternatives are either all approved or

all disapproved.

Indeed, let 𝑘 be a value such that

Pr(𝑡 ∈ 𝐼𝑘 ) ⩽
⌈
log

2
(𝑚)/log

2
(2 log

2
(𝑚))

⌉−1
,

which must exist by the pigeonhole principle.

Fix a subset 𝑆 ⊆ 𝐴 of size

⌈
log

2
(𝑚)

⌉
, and let 𝑉 = 𝑢𝑘/2 + (

⌈
log

2
(𝑚)

⌉
− 1)ℓ𝑘 .

We will give each voter the same utilities, so that 𝑢 (𝑎) := 𝑢𝑖 (𝑎) = 𝑣𝑖 (𝑎) for all 𝑖 ∈ 𝑁, 𝑎 ∈ 𝐴. For

all 𝑎 ∈ 𝑆 , assign utilities so that

∑
𝑎∈𝑆 𝑢 (𝑎) = 𝑉 , for all 𝑎 ∉ 𝑆 , let 𝑢 (𝑎) = (1 −𝑉 )/(𝑚 −

⌈
log

2
(𝑚)

⌉
).

We can verify that ℓ𝑘 ⩽
1

2 log
2
(𝑚)𝑢𝑘 for all 𝑘 . We can then see that the utilities sum to one, and

are all positive as:

𝑉 =
𝑢𝑘

2

+ (
⌈
log

2
(𝑚)

⌉
− 1)ℓ𝑘 ⩽

1

2

+
⌈
log

2
(𝑚)

⌉
− 1

2 log
2
(𝑚) ⩽ 1.
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We construct this so that all alternatives in 𝑆 have utilities contained in 𝐼𝑘 . Thus, when 𝑡 ∉ 𝐼𝑘 , all

voters either approve 𝑆 or disapprove 𝑆 . Therefore, there must exist some 𝑎∗ ∈ 𝑆 such that

Pr(𝑎∗is returned | 𝑡 ∉ 𝐼𝑘 ) ⩽ 1/
⌈
log

2
(𝑚)

⌉
.

Now, we can assign 𝑢 (𝑎∗) = 𝑢𝑘/2 and 𝑢 (𝑎) = ℓ𝑘 for 𝑎 ∈ 𝑆 \ {𝑎∗}. Then, the optimal choice is

𝑎∗ with social welfare 𝑛𝑢𝑘/2, but instead, since ℓ𝑘 > (1 − 𝑉 )/(𝑚 − log
2
(𝑚)), we pick with high

probability an alternative with at most 𝑛ℓ𝑘 utility.

Indeed, the expected social welfare of 𝑓 is:

Pr(𝑡 ∈ 𝐼𝑘 ) ·
𝑛𝑢𝑘

2

+ Pr(𝑡 ∉ 𝐼𝑘 )
(

1⌈
log

2
(𝑚)

⌉ · 𝑛𝑢𝑘
2

+
⌈
log

2
(𝑚)

⌉
− 1⌈

log
2
(𝑚)

⌉ · 𝑛ℓ𝑘

)
⩽

(⌈
log

2
(𝑚)/log

2
(2 log

2
(𝑚))

⌉−1 + 1⌈
log

2
(𝑚)

⌉ + ⌈
log

2
(𝑚)

⌉
− 1⌈

log
2
(𝑚)

⌉ · 1

log
2
(𝑚)

)
𝑛𝑢𝑘

2

⩽
(⌈
log

2
(𝑚)/log

2
(2 log

2
(𝑚))

⌉−1)
𝑛𝑢𝑘 .

The maximum social welfare that we can get is 𝑛𝑢𝑘/2, so the distortion is:

dist𝐷-rth (𝑓 ) ⩾
𝑛𝑢𝑘
2

𝑛𝑢𝑘

⌈
log

2
(𝑚)

log
2
(2 log

2
(𝑚) )

⌉−1 =
1

2

⌈
log

2
(𝑚)

log
2
(2

⌈
log

2
(𝑚)

⌉
)

⌉
. □

Theorems 17 and 18 are corollaries of Theorems 3.4 and 3.6 of Benadè et al. [2021], respectively.

Their lower bound, derived under the unit-sum assumption, carries over to our more general setup.

While they do not allow public-spirited behavior, in their construction the utility of each alternative

is the same across all voters, ensuring that any level of public-spirited behavior does not affect their

construction. The only reason we provide full proofs is that Benadè et al. [2021] derive only an

asymptotic lower bound by making several simplifying assumptions, which we carefully remove to

derive an exact lower bound.

C PROOFS FROM SECTION 2 (PRELIMINARIES)
C.1 Proof of Lemma 1
Lemma 1. Let 𝐴1, 𝐴2 ⊆ 𝐴 be two arbitrary subsets of alternatives. Fix any 𝛼 ⩾ 0 and define

𝑁𝐴1≻𝐴2
= {𝑖 ∈ 𝑁 : 𝛼 · 𝑣𝑖 (𝐴1) ⩾ 𝑣𝑖 (𝐴2)}. Then:

sw(𝐴2)
sw(𝐴1)

⩽ 𝛼 ·
(
1 − 𝛾min

𝛾min

𝑛��𝑁𝐴1≻𝐴2

�� + 1

)
.

Proof. The proof is the same as the proof of Lemma 3.1 by Flanigan et al. [2023]. Indeed, for

each voter 𝑖 ∈ 𝑁𝐴1≻𝐴2
, we know that 𝛼𝑣𝑖 (𝐴1) ⩾ 𝑣𝑖 (𝐴2), and so:

𝛼

(
(1 − 𝛾𝑖 )𝑢𝑖 (𝐴1) + 𝛾𝑖

sw(𝐴1)
𝑛

)
⩾ (1 − 𝛾𝑖 )𝑢𝑖 (𝐴2) + 𝛾𝑖

sw(𝐴2)
𝑛

⩾ 𝛾𝑖
sw(𝐴2)

𝑛
.

Dividing by 𝛾𝑖 and using the fact that
1−𝛾𝑖
𝛾𝑖

is decreasing in 𝛾𝑖 we have:

𝛼

(
1 − 𝛾min

𝛾min

· 𝑢𝑖 (𝐴) +
sw(𝐴1)

𝑛

)
⩾

sw(𝐴2)
𝑛

.
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Summing over all voters in 𝑁𝐴1≻𝐴2
,

𝛼

(
1 − 𝛾min

𝛾min

∑︁
𝑖∈𝑁𝐴

1
≻𝐴

2

𝑢𝑖 (𝐴1) +
sw(𝐴1)

��𝑁𝐴1≻𝐴2

��
𝑛

)
⩾

sw(𝐴2)
��𝑁𝐴1≻𝐴2

��
𝑛

.

Using the fact that

∑
𝑖∈𝑁𝐴

1
≻𝐴

2

𝑢𝑖 (𝐴1) ⩽
∑

𝑖∈𝑁 𝑢𝑖 (𝐴1) = sw(𝐴1),

𝛼

(
1 − 𝛾min

𝛾min

sw(𝐴1) +
sw(𝐴1)

��𝑁𝐴1≻𝐴2

��
𝑛

)
⩾

sw(𝐴2)
��𝑁𝐴1≻𝐴2

��
𝑛

,

and, after some simplification, we finally get the desired upper bound:

sw(𝐴2)
sw(𝐴1)

⩽ 𝛼

(
1 − 𝛾min

𝛾min

𝑛��𝑁𝐴1≻𝐴2

�� + 1

)
. □

C.2 Distortion Without Public Spirit
In this section, we consider the distortion that can be achieved under various ballot formats without

an assumption of public-spirited voters, or equivalently, when 𝛾𝑖 = 0 for every voter 𝑖 ∈ 𝑁 . This

serves as a benchmark and motivates the need for cultivating public spirit among voters. It is

also interesting to note that without any public spirit, the information in the ballots is useless as

rules that ignore the ballots altogether turn out to be worst-case optimal. In contrast, the worst-

case optimal rules in the presence of even a little bit of public spirit are both qualitatively and

quantitatively fairer.

Proposition 4. For any ballot format X ∈ {rbv, vfm, knap, 𝜏-th, 𝐷-rth} (with any threshold 𝜏 and

threshold distribution 𝐷), every deterministic rule has unbounded distortion when 𝛾𝑖 = 0 for all 𝑖 ∈ 𝑁 .

Proof. First, consider the ballot formats other than randomized threshold approval votes. For

deterministic threshold approval votes, pick any threshold 𝜏 ∈ [0, 1]. Let 𝑛 be even.

Consider an instance as follows. The cost of each alternative is 1, i.e., 𝑐 (𝑎) = 1 for each 𝑎 ∈ 𝐴.

Pick any two alternatives 𝑎1, 𝑎2 ∈ 𝐴, and let the input profile be as follows. Partition the voters into

two equal-sized groups 𝑁1, 𝑁2.

• Under X ∈ {rbv, vfm}, each voter in 𝑁1 ranks 𝑎1 at the top, 𝑎2 next, and the remaining

alternatives afterwards (arbitrarily); and each voter in 𝑁2 ranks 𝑎2 at the top, 𝑎1 next, and

the remaining alternatives afterwards (arbitrarily).

• Under X ∈ {knap, 𝜏-th} (where 𝜏 ≠ 0), each voter in 𝑁1 submits {𝑎1} and each voter in 𝑁2

submits {𝑎2}.
• Under X = 𝜏-th with 𝜏 = 0, every voter approves all the alternatives.

Fix any of the above ballot formats X and consider any deterministic rule 𝑓X. Suppose it picks

alternative 𝑎. Note that at least one of 𝑎1 and 𝑎2 is not picked by 𝑓X. Due to the symmetry, assume

without loss of generality that it is 𝑎1. Then, for an arbitrarily chosen Y ∈ (0, 1), consider the
following consistent utility matrix𝑈 .

• Each voter in 𝑁1 has utility 1 for 𝑎1 and 0 for all other alternatives.

• Each voter in 𝑁2 has utility Y for 𝑎2 and 0 for all other alternatives.

Then, the distortion of 𝑓X is at least

sw(𝑎1,𝑈 )
sw(𝑎,𝑈 ) =

𝑛/2
Y · 𝑛/2 =

1

Y
.

Because Y ∈ (0, 1) was chosen arbitrarily, we can take the worst case by letting Y → 0, which

establishes unbounded distortion.



Mark Bedaywi, Bailey Flanigan, Mohamad Latifian, and Nisarg Shah 28

For randomized threshold approval votes with any threshold distribution 𝐷 , we cannot fix the

input profile upfront as it depends on the threshold 𝜏 sampled from 𝐷 . However, we can assume

that for each 𝜏 the rule sees the profile described above for 𝜏-th. The proof continues to work

because the consistent utility matrix𝑈 described above is independent of the value of 𝜏 (and hence,

can be set upfront without knowing the value of 𝜏). □

Proposition 5. For any ballot format X ∈ {rbv, vfm, knap, 𝜏-th, 𝐷-rth} (with any threshold 𝜏 and

threshold distribution 𝐷), every randomized rule has distortion at least𝑚 when 𝛾𝑖 = 0 for all 𝑖 ∈ 𝑁

and this is tight.

Proof. For the upper bound under all ballot formats, it suffices to show that the trivial randomized

rule 𝑓 , which does not take any ballots as input and simply returns a single alternative chosen

uniformly at random, achieves distortion at most𝑚. Fix any instance 𝑈 and let 𝐴∗
be an optimal

budget-feasible set of alternatives. Then, the expected social welfare under 𝑓 is

1

𝑚

∑︁
𝑎∈𝐴

sw(𝑎,𝑈 ) ⩾ 1

𝑚
sw(𝐴∗,𝑈 ),

which implies the desired upper bound of𝑚 on the distortion of 𝑓 .

For the lower bound, we simply extend the argument from the proof of Proposition 4. Define an

instance with𝑚 alternatives 𝑎1, 𝑎2, . . . , 𝑎𝑚 , all with cost 1 (i.e., 𝑐 (𝑎 𝑗 ) = 1 for all 𝑗 ∈ [𝑚]). Fix any
randomized rule 𝑓X for each ballot X in the statement of the proposition.

Let us first consider ballot formats other than randomized threshold approval votes. Consider the

following symmetric profiles for each ballot format. Suppose 𝑛 divides𝑚 and voters are partitioned

into𝑚 equal-size groups 𝑁1, . . . , 𝑁𝑚 . Then:

• for X ∈ {rbv, vfm}, for each 𝑗 ∈ [𝑚], every voter in 𝑁 𝑗 submits the ranking 𝑎 𝑗 ≻ 𝑎 𝑗+1 ≻ · · · ≻
𝑎𝑚 ≻ 𝑎1 ≻ · · · ≻ 𝑎 𝑗−1, and

• for X = {knap, 𝜏-th} (for any 𝜏), for each 𝑗 ∈ [𝑚], every voter in 𝑁 𝑗 submits the set of

alternatives {𝑎 𝑗 }.
For 𝜏-threshold approval votes, there is an edge case where this profile may not be feasible with

𝜏 = 0, in which case we can set the profile to have every voter approving all alternatives. The utility

matrix defined below would still remain consistent in this case.

For each ballot format X, the corresponding rule must pick at least one alternative with probability

𝑝X ⩽ 1/𝑚. Due to the symmetry, we can assume without loss of generality that this alternative is

𝑎1.

Fix any Y ∈ (0, 1). We define a consistent utility matrix𝑈 that works for all of the above ballot

formats:

• Every voter in 𝑁1 has utility 1 for 𝑎1 and 0 for all other alternatives.

• For each 𝑗 ∈ {2, . . . ,𝑚}, every voter in 𝑁 𝑗 has utility Y for 𝑎 𝑗 and 0 for all other alternatives.

Finally, notice that the maximum possible social welfare is sw(𝑎1,𝑈 ) = 1, whereas the expected

social welfare under the rule 𝑓X is 𝑝X · 1 + (1 − 𝑝X) · Y ⩽ 1/𝑚 + (1 − 1/𝑚) · Y. Thus, the distortion of

𝑓X is at least
1

1/𝑚+(1−1/𝑚) ·Y . Since Y ∈ (0, 1) was chosen arbitrarily, we can take the worst case by

letting Y → 0, in which case we get that the distortion must be at least𝑚.

For randomized threshold approval votes with threshold distribution 𝐷 , we cannot fix the input

profile as the input profile depends on the threshold 𝜏 sampled from 𝐷 . However, we can assume

that the rule sees the generic input profile described above (where each voter approves only her

most favorite alternative) for any 𝜏 ≠ 0 and the edge-case input profile (where every voter approves

all the alternatives). Due to the symmetry, the rest of the argument goes through as the final utility

matrix𝑈 constructed above is consistent with these input profiles for all 𝜏 . □
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D PROOFS FROM SECTION 3 (SINGLE WINNER)
D.1 Proof of Theorem 1
Theorem 1 (Lower Bound - Deterministic). Any deterministic single-winner voting rules 𝑓

with ranked preferences has distortion

dist𝑟𝑏𝑣 (𝑓 ) ⩾ 1 + 2

1 − 𝛾min

𝛾min

· 𝑚2

2𝛾min + 𝛾min𝑚
2 + (2 − 3𝛾min)𝑚

∈ Ω

(
1

𝛾min

·min

{
𝑚,

1

𝛾min

})
.

Proof. Suppose we have𝑚 alternatives 𝑎1, . . . , 𝑎𝑚 and 𝑛 voters each with the same PS-value

of 𝛾 = 𝛾min. For ease of exposition, let 𝑛 be divisible by𝑚. Our construction consists of𝑚 types

of voters, equally distributed with 𝑛/𝑚 voters of each type. Let 𝑁𝑘 be the set of voters of type 𝑘 .

Suppose each voter type votes as follows,

𝑁1 : 𝑎1 ≻ 𝑎2 ≻ . . . ≻ 𝑎𝑚−1 ≻ 𝑎𝑚
𝑁2 : 𝑎2 ≻ 𝑎3 ≻ . . . ≻ 𝑎𝑚 ≻ 𝑎1
...

𝑁𝑚−1 : 𝑎𝑚−1 ≻ 𝑎𝑚 ≻ . . . ≻ 𝑎𝑚−3 ≻ 𝑎𝑚−2
𝑁𝑚 : 𝑎𝑚 ≻ 𝑎1 ≻ . . . ≻ 𝑎𝑚−2 ≻ 𝑎𝑚−1

so that 𝑁𝑖 prefers alternative 𝑎𝑖 most, and cycles through the rest.

Without the loss of generality, suppose the voting rule picks 𝑎1. We will set the utilities so that

sw(𝑎𝑚) > sw(𝑎𝑚−1) > · · · > sw(𝑎2) > sw(𝑎1). To do so, set for all voters 𝑖 ,

𝑢𝑖 (𝑎𝑚) =


1 if 𝑖 ∈ 𝑁𝑚

0 if 𝑖 ∈ 𝑁1

𝑢𝑖 (𝑎1) otherwise

.

For all 𝑘 from 1 to𝑚 − 1 and for all 𝑖 ∈ 𝑁1,

𝑢𝑖 (𝑎𝑘 ) =
𝛾

1 − 𝛾

(
sw(𝑎𝑚) − sw(𝑎𝑘 )

𝑛

)
,

and for all 𝑗 from 2 to𝑚, for all 𝑖 ∈ 𝑁 𝑗 , for 𝑘 from 1 to𝑚 − 1, when 𝑘 < 𝑗 − 1:

𝑢𝑖 (𝑎𝑘 ) =
𝛾

1 − 𝛾

(
sw(𝑎 𝑗−1) − sw(𝑎𝑘 )

𝑛

)
,

and when 𝑘 ⩾ 𝑗 :

𝑢𝑖 (𝑎𝑘 ) =
𝛾

1 − 𝛾

(
sw(𝑎𝑚) − sw(𝑎𝑘 )

𝑛
+

sw(𝑎 𝑗−1) − sw(𝑎1)
𝑛

)
,

and 𝑢𝑖 (𝑎 𝑗−1) = 0.
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Then, for 𝑘 from 1 to𝑚 − 1,

sw(𝑎𝑘 ) =
𝑚∑︁
𝑗=1

∑︁
𝑖∈𝑁 𝑗

𝑢𝑖 (𝑎𝑘 )

=
𝛾

1 − 𝛾
· 1
𝑛

( ∑︁
𝑖∈𝑁1

(
sw(𝑎𝑚) − sw(𝑎𝑘 )

)
+

𝑘∑︁
𝑗=2

∑︁
𝑖∈𝑁 𝑗

(
sw(𝑎𝑚) − sw(𝑎𝑘 ) + sw(𝑎 𝑗−1) − sw(𝑎1)

)
+ 0

+
𝑚∑︁

𝑗=𝑘+2

∑︁
𝑖∈𝑁 𝑗

(
sw(𝑎 𝑗−1) − sw(𝑎𝑘 )

))

=
𝛾

1 − 𝛾
· 1
𝑛
· 𝑛
𝑚

©«(𝑘 − 1) (sw(𝑎𝑚) − sw(𝑎1)) − (𝑚 − 1)sw(𝑎𝑘 ) +
𝑚∑︁

𝑗=1, 𝑗≠𝑘

sw(𝑎 𝑗 )
ª®¬

=
𝛾

1 − 𝛾
· 1
𝑚

(
(𝑘 − 1) (sw(𝑎𝑚) − sw(𝑎1)) −𝑚 · sw(𝑎𝑘 ) +

𝑚∑︁
𝑗=1

sw(𝑎 𝑗 )
)
.

Let 𝑆 =
∑𝑚

𝑗=1 sw(𝑎 𝑗 ). Adding
𝛾

1−𝛾 sw(𝑎𝑘 ) to both sides of the above and rearranging, we get:

sw(𝑎𝑘 ) =
𝛾

𝑚
((𝑘 − 1) (sw(𝑎𝑚) − sw(𝑎1)) + 𝑆) .

In particular, sw(𝑎1) = 𝛾

𝑚
𝑆 , so

sw(𝑎𝑘 ) =
𝛾

𝑚

(
(𝑘 − 1)sw(𝑎𝑚) + 𝑆 · 𝑚 − (𝑘 − 1)𝛾

𝑚

)
.

Via the same reasoning,

sw(𝑎𝑚) =
𝑚∑︁
𝑗=1

∑︁
𝑖∈𝑁 𝑗

𝑢𝑖 (𝑎𝑚)

=
𝛾

1 − 𝛾
· 1
𝑛

(𝑚−1∑︁
𝑗=2

∑︁
𝑖∈𝑁 𝑗

(
sw(𝑎 𝑗−1) − sw(𝑎1)

))
+ 𝑛

𝑚

=
𝛾

1 − 𝛾
· 1
𝑚

(𝑚−1∑︁
𝑗=2

(
sw(𝑎 𝑗−1) − sw(𝑎1)

))
+ 𝑛

𝑚

=
𝛾

1 − 𝛾
· 1
𝑚

(
𝑆 − (𝑚 − 2)sw(𝑎1) − sw(𝑎𝑚) − sw(𝑎𝑚−1)

)
+ 𝑛

𝑚

=
𝛾

1 − 𝛾
· 1
𝑚

(
𝑆 − 𝛾 (𝑚 − 2)

𝑚
𝑆 − sw(𝑎𝑚) −

𝛾

𝑚

(
(𝑚 − 2)sw(𝑎𝑚) + 𝑆 · 𝑚 − (𝑚 − 2)𝛾

𝑚

) )
+ 𝑛

𝑚

=
𝛾

1 − 𝛾
· 1
𝑚

(
𝑚 − (𝑚 − 2)𝛾

𝑚
· 𝑚 − 𝛾

𝑚
𝑆 − 𝑚 + 𝛾 (𝑚 − 2)

𝑚
sw(𝑎𝑚)

)
+ 𝑛

𝑚

=
𝛾

1 − 𝛾
· 1
𝑚

(
𝑚 − (𝑚 − 2)𝛾

𝑚
· 𝑚 − 𝛾

𝑚
𝑆

)
+ 𝑛

𝑚
− 𝛾 (𝑚 + 𝛾 (𝑚 − 2))

(1 − 𝛾)𝑚2
sw(𝑎𝑚).
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Adding
𝛾 (𝑚+𝛾 (𝑚−2) )

(1−𝛾 )𝑚2
sw(𝑎𝑚) to both sides and rearranging:

sw(𝑎𝑚) =
(1 − 𝛾)𝑚2

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2))

(
𝛾

1 − 𝛾
· 1
𝑚

(
𝑚 − (𝑚 − 2)𝛾

𝑚
· 𝑚 − 𝛾

𝑚
𝑆

)
+ 𝑛

𝑚

)
=

𝛾𝑚

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2))

(
𝑚 − (𝑚 − 2)𝛾

𝑚
· 𝑚 − 𝛾

𝑚
𝑆

)
+ (1 − 𝛾)𝑚𝑛

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2))

=
𝛾 (𝑚 − (𝑚 − 2)𝛾)

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2)) ·
𝑚 − 𝛾

𝑚
𝑆 + (1 − 𝛾)𝑛𝑚

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2)) .

Now, we can finally solve for 𝑆 :

𝑆 =

𝑚∑︁
𝑘=1

sw(𝑎𝑘 )

= sw(𝑎𝑚) +
𝛾

𝑚

𝑚−1∑︁
𝑘=1

(
(𝑘 − 1)sw(𝑎𝑚) + 𝑆

𝑚 − (𝑘 − 1)𝛾
𝑚

)
= sw(𝑎𝑚) +

𝛾 (𝑚 − 1) (𝑚 − 2)
2𝑚

sw(𝑎𝑚) +
𝛾

𝑚2
𝑆

𝑚−1∑︁
𝑘=1

(𝑚 − (𝑘 − 1)𝛾)

=
2𝑚 + 𝛾 (𝑚 − 1) (𝑚 − 2)

2𝑚
sw(𝑎𝑚) +

𝛾

𝑚2
𝑆 · (𝑚 − 1) (2𝛾 +𝑚(2 − 𝛾))

2

=
2𝑚 + 𝛾 (𝑚 − 1) (𝑚 − 2)

2𝑚

(
𝛾 (𝑚 − (𝑚 − 2)𝛾)

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2)) ·
𝑚 − 𝛾

𝑚
𝑆 + (1 − 𝛾)𝑛𝑚

(1 − 𝛾)𝑚2 + 𝛾 (𝑚 + 𝛾 (𝑚 − 2))

)
+ 𝑆 · 𝛾 (𝑚 − 1) (2𝛾 +𝑚(2 − 𝛾))

2𝑚2
.

After simplifying this, we get:

𝑆 = 𝑛
2𝛾 + 𝛾𝑚2 + (2 − 3𝛾)𝑚

2(1 − 𝛾)𝑚2 + 2𝛾 (𝛾 + 1)𝑚 − 4𝛾2
.

This then implies that

sw(𝑎𝑚) =
𝑛

𝑚
·
2𝑚2 (1 − 𝛾) +

(
𝑚(2 − 3𝛾) + 2𝛾 +𝑚2𝛾

)
𝛾

2(1 − 𝛾)𝑚2 + 2𝛾 (𝛾 + 1)𝑚 − 4𝛾2
,

and so we ultimately get the following social welfare for each alternative, for 𝑘 from 1 to𝑚 − 1:

sw(𝑎𝑘 ) =
𝑛

𝑚
·
𝛾

(
2(1 − 𝛾)𝑘𝑚 + 𝛾

(
𝑚2 −𝑚 + 2

) )
2(1 − 𝛾)𝑚2 + 2𝛾 (𝛾 + 1)𝑚 − 4𝛾2

.

The chain of inequalities sw(𝑎𝑚) > · · · > sw(𝑎1) does indeed hold, and knowing this, we can

verify that the above utilities are non-negative.

This gives distortion, after simplifying:

sw(𝑎𝑚)
sw(𝑎1)

= 1 + 2(1 − 𝛾)𝑚2

𝛾 (2𝛾 + 𝛾𝑚2 + (2 − 3𝛾)𝑚) .

To show that this is asymptotically as desired, we can write this as:

1 + 2(1 − 𝛾)
𝛾

(
2𝛾 + 𝛾𝑚2 + (2 − 3𝛾)𝑚

𝑚2

)−1
.
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Since, for any positive 𝑎, 𝑏, we have that (𝑎 + 𝑏)−1 ⩾ 1

2
min{𝑎−1, 𝑏−1}, this expression is in:

Ω

(
1 + 1 − 𝛾

𝛾
min

{
𝑚2

𝛾 (𝑚2 + 2) ,
𝑚2

𝑚(2 − 3𝛾)

})
= Ω

(
1 + 1 − 𝛾

𝛾
min

{
1

𝛾
,𝑚

})
,

which in the 𝛾 → 0 regime is asymptotic in Ω
(
min{1/𝛾,𝑚}

𝛾

)
. □

D.2 Proof of Theorem 2
Theorem 2 (Lower Bound - Randomized). Any randomized single-winner voting rules 𝑓 with

ranked preferences has distortion

dist𝑟𝑏𝑣 (𝑓 ) ∈ Ω

(
min

{
𝑚,

1

𝛾min

})
.

Proof. Use the same input profile ®𝜌 as in the proof of Theorem 1. Let 𝑝 (𝑎𝑖 ) be the probability
that 𝑎𝑖 is picked by rule 𝑓 and without the loss of generality, suppose that 𝑎min = argmin𝑎𝑝 (𝑎).
Then, for any 𝑗 , 1 =

∑
𝑖 𝑝 (𝑎𝑖 ) ⩾ 𝑝 (𝑎 𝑗 ) + (𝑚 − 1)𝑝 (𝑎min), so 𝑝 (𝑎 𝑗 ) ⩽ 1 − (𝑚 − 1)𝑝 (𝑎 𝑗 )

By the proof of Theorem 1, sw(𝑎1) ⩽ sw(𝑎2) ⩽ · · · ⩽ sw(𝑎𝑚), and so we can maximize social

welfare by picking 𝑎𝑚 .

The expected social welfare of 𝑓 is at most:

E𝑎∼𝑓 ( ®𝜌 ) [sw(𝑎)] =
1

𝑚
sw(𝑎𝑚) +

𝑚 − 1

𝑚

𝑚−1
max

𝑘=1
sw(𝑎𝑘 )

=
𝑛

𝑚(2(1 − 𝛾)𝑚2 + 2𝛾 (𝛾 + 1)𝑚 − 4𝛾2) ·
(
2𝑚2 (1 − 𝛾) +

(
𝑚(2 − 3𝛾) + 2𝛾 +𝑚2𝛾

)
𝛾

𝑚

+ 𝑚 − 1

𝑚
· (𝛾

(
2(1 − 𝛾) (𝑚 − 1)𝑚 + 𝛾

(
𝑚2 −𝑚 + 2

) )
)
)

=
𝑛

𝑚
· 𝛾 (𝛾 − 2) (𝑚 − 2) (𝑚 − 1) − 2𝑚

2((1 − 𝛾)𝑚 + 2𝛾) (𝑚 − 𝛾) .

So, the distortion is:

sw(𝑎𝑚)
E𝑎∼𝑓 ( ®𝜌 ) [sw(𝑎)]

=
𝑛

𝑚
·
2𝑚2 (1 − 𝛾) +

(
𝑚(2 − 3𝛾) + 2𝛾 +𝑚2𝛾

)
𝛾

2(1 − 𝛾)𝑚2 + 2𝛾 (𝛾 + 1)𝑚 − 4𝛾2

·
(
𝑛

𝑚
· 𝛾 (𝛾 − 2) (𝑚 − 2) (𝑚 − 1) − 2𝑚

2((1 − 𝛾)𝑚 + 2𝛾) (𝑚 − 𝛾)

)−1
= 1 + 2(1 − 𝛾) (𝑚 − 1) ((1 − 𝛾)𝑚 + 2𝛾)

𝛾 (2 − 𝛾) (𝑚 − 2) (𝑚 − 1) + 2𝑚

⩾ 1 + 2(1 − 𝛾)2 (𝑚 − 1)𝑚
𝛾 (2 − 𝛾) (𝑚 − 2) (𝑚 − 1) + 2𝑚

.

Since, for any positive 𝑎, 𝑏, we have that (𝑎 + 𝑏)−1 ⩾ 1

2
min{𝑎−1, 𝑏−1}:

sw(𝑎𝑚)
E𝑎∼𝑓 ( ®𝜌 ) [sw(𝑎)]

∈ Ω

(
(1 − 𝛾)2 min

{
2(𝑚 − 1)𝑚

𝛾 (2 − 𝛾) (𝑚 − 2) (𝑚 − 1) ,
2(𝑚 − 1)𝑚

2𝑚

})
∈ Ω

(
(1 − 𝛾)2 min

{
1

𝛾
,𝑚

})
,

which in the 𝛾 → 0 regime, is Ω (min {1/𝛾,𝑚}). □
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E PROOFS FROM SECTION 4 (RANKINGS BY VALUE)
E.1 Proof of Theorem 4

Theorem 4 (lower bound). For rankings by value, every deterministic rule 𝑓 has distortion

distrbv (𝑓 ) ⩾
𝑚 − 1

𝛾min

∈ Ω

(
𝑚

𝛾min

)
.

Proof. Consider an instance with 𝐴 = {𝑎, 𝑏1, . . . 𝑏𝑚−1}, where 𝑎 costs 1 and every other alter-

native costs 1/(𝑚 − 1). Define 𝑝 =
1−𝛾min

1−𝛾min+𝑚2
. Let 𝑁1 be a set of 𝑛(1 − 𝑝) voters and 𝑁2 = 𝑁 \ 𝑁1.

Suppose that members of 𝑁1 submit ranking (𝑎 ≻ 𝑏1 ≻ . . . ≻ 𝑏𝑚−1) and members of 𝑁2 vote

(𝑏1 ≻ . . . ≻ 𝑏𝑚−1 ≻ 𝑎).
Now consider two cases.

Case 1: If the aggregation rule selects 𝑎, consider utility matrix𝑈 where members of 𝑁1 have utility

of
𝛾min𝑝

1−𝑝𝛾min

for 𝑎 and 0 for the rest, while members of 𝑁2 have utility of 0 for 𝑎 and 1 for the rest of

the alternatives. This means sw(𝑎) = 𝑛(1 − 𝑝) 𝛾min𝑝

1−𝛾min𝑝
, and sw(𝑏) = 𝑛𝑝 for 𝑏 ∈ 𝐴 \ {𝑎}. Alongside

with the PS-vector ®𝛾 = [𝛾min]𝑛 we have value matrix 𝑉®𝛾,𝑈 first of all we have to make sure that this

is consistent with the input profile. For 𝑖 ∈ 𝑁1,

𝑣𝑖 (𝑎) = (1 − 𝛾min)
𝛾min𝑝

1 − 𝛾min𝑝
+ 𝛾min (1 − 𝑝) 𝛾min𝑝

1 − 𝛾min𝑝

= (1 − 𝛾min𝑝)
𝛾min𝑝

1 − 𝛾min𝑝
= 𝛾min𝑝,

and 𝑣𝑖 (𝑏 𝑗 ) = (1 − 𝛾min) × 0 + 𝛾min𝑝 = 𝛾min𝑝. Therefore, the value matrix is consistent with the

ranking of the members of 𝑁1. On the other hand for 𝑖 ∈ 𝑁2 we have, 𝑣𝑖 (𝑎) = 𝛾min (1 − 𝑝) 𝛾min𝑝

1−𝛾min𝑝
,

and 𝑣𝑖 (𝑏 𝑗 ) = 1 − 𝛾min + 𝛾min𝑝, where for 𝑝 =
1−𝛾min

1−𝛾min+𝑚2
we have:

𝑣𝑖 (𝑎) =
𝛾2
min

𝑚2 (1 − 𝛾min)
(𝑚2 + 1 − 𝛾min) (𝑚2 + (1 − 𝛾min)2)

,

𝑣𝑖 (𝑏 𝑗 ) =
(𝑚2 + 1) (1 − 𝛾min)
𝑚2 + 1 − 𝛾min

.

This gives us:

𝑣𝑖 (𝑎)
𝑣𝑖 (𝑏 𝑗 )

=
𝛾2
min

𝑚2

(𝑚2 + 1) (𝑚2 + (1 − 𝛾min)2)
⩽ 1

=⇒ 𝑣𝑖 (𝑏 𝑗 ) ⩾ 𝑣𝑖 (𝑎),
and therefore the votes of voters in 𝑁2 are consistent with the value matrix 𝑉®𝛾,𝑈 .
By picking budget-feasible set {𝑏1, . . . , 𝑏𝑚−1} we can get a social welfare of 𝑛(𝑚 − 1)𝑝 , while

instead we got 𝑛(1 − 𝑝) 𝛾min𝑝

1−𝑝𝛾min

by choosing 𝑎. This leaves us with a distortion of

(𝑚 − 1) (1 − 𝑝𝛾min)
(1 − 𝑝)𝛾min

.

Since 𝑝 ⩾ 0 and 𝛾min ⩽ 1, 𝑝 ⩾ 𝑝𝛾min, and so 1 − 𝑝𝛾min ⩾ 1 − 𝑝 . Therefore, we get the desired

distortion:

(𝑚 − 1) (1 − 𝑝𝛾min)
(1 − 𝑝)𝛾min

⩾
𝑚 − 1

𝛾min

.

Case 2: If the aggregation rule does not select 𝑎, consider the utility matrix 𝑈 where members

of 𝑁1 have utility of 1 for 𝑎 and 0 for the rest, while members of 𝑁2 have utility of 0 for 𝑎 and



Mark Bedaywi, Bailey Flanigan, Mohamad Latifian, and Nisarg Shah 34

𝛾min (1−𝑝 )
1−𝛾min (1−𝑝 ) for the rest of the alternatives. This gives us sw(𝑎) = 𝑛(1−𝑝), and sw(𝑏) = 𝑛𝑝

𝛾min (1−𝑝 )
1−𝛾min (1−𝑝 )

for 𝑏 ∈ 𝐴 \ {𝑎}. Again we have to check that the value matrix 𝑉®𝛾,𝑈 is consistent with the input

profile. For 𝑖 ∈ 𝑁1 we have: 𝑣𝑖 (𝑎) = 1−𝛾min +𝛾min (1−𝑝) = 1−𝛾min𝑝 , and 𝑣𝑖 (𝑏 𝑗 ) = 𝛾min𝑝
𝛾min (1−𝑝 )

1−𝛾min (1−𝑝 ) .

The value matrix is consistent with the ranking of the members of 𝑁1, i.e. 𝑣𝑖 (𝑎) ⩾ 𝑣𝑖 (𝑏 𝑗 ), as:

𝛾min ⩽ 1 =⇒ 0 ⩽ 𝛾min𝑝 ⩽ 1 − 𝛾min (1 − 𝑝)

=⇒ 𝛾min𝑝
1

1 − 𝛾min (1 − 𝑝) ⩽ 1

=⇒ 𝛾min𝑝
𝛾min (1 − 𝑝)

1 − 𝛾min (1 − 𝑝) ⩽ 1 − 𝛾min𝑝.

Moreover, for 𝑖 ∈ 𝑁2 we have: 𝑣𝑖 (𝑎) = 𝛾min (1 − 𝑝), and

𝑣𝑖 (𝑏 𝑗 ) = (1 − 𝛾min)
𝛾min (1 − 𝑝)

1 − 𝛾min (1 − 𝑝) + 𝛾min𝑝
𝛾min (1 − 𝑝)

1 − 𝛾min (1 − 𝑝)

= (1 − 𝛾min (1 − 𝑝)) 𝛾min (1 − 𝑝)
1 − 𝛾min (1 − 𝑝) = 𝛾min (1 − 𝑝).

So we have 𝑣𝑖 (𝑎) = 𝑣𝑖 (𝑏 𝑗 ) which means that the value matrix is consistent with the ranking of the

members of 𝑁2 as well.

Since 𝑎 is not picked by the aggregation rule, we get a maximum social welfare of (𝑚 −
1)𝑛𝑝 𝛾min (1−𝑝 )

1−𝛾min (1−𝑝 ) when we could have gotten a social welfare of 𝑛𝑝 from 𝑎 meaning a distortion of:

distrbv (𝑓 ) ⩾
1 − 𝛾min (1 − 𝑝)
𝛾min𝑝 (𝑚 − 1) ⩾

𝑚 − 1

𝛾min

.

All the conditions above hold for𝑚 ⩾ 2, so we have a distortions of at least:
𝑚−1
𝛾min

. □

E.2 Proof of Lemma 4
Lemma 4 (Single-Winner→ Committee). Fix any 𝑘 ∈ [𝑚] and 𝑑 ⩾ 1. If there exists a single-winner

rule with distortion at most 𝑑 for each𝑚′ ⩽ 𝑚, then there exists a 𝑘-committee selection rule with

distortion at most 𝑑 . The committee selection rule is deterministic if the underlying rule is deterministic,

and it is randomized if the underlying rule is randomized.

Proof. Let 𝐴∗ = {𝑎∗
1
, . . . , 𝑎∗

𝑘
} be the optimal budget-feasible set, sorted from highest social

welfare to the lowest so that 𝑖 < 𝑗 =⇒ sw(𝑎∗𝑖 ) ⩾ sw(𝑎∗𝑗 ). Let 𝑆 denote the set of alternatives that

our algorithm picks.

Consider the 𝑖th iteration of the procedure. Let 𝑎+𝑖 be the alternative with the highest social

welfare among the remaining alternatives, and 𝑎𝑖 be the random alternative picked by the single-

winner voting rule in this round. We know that sw(𝑎+𝑖 ) ⩾ sw(𝑎∗𝑖 ) and since the single-winner

rule has expected distortion of 𝑑 , we have E[sw(𝑎𝑖 )] ⩾
sw(𝑎+𝑖 )

𝑑
which implies E[sw(𝑎𝑖 )] ⩾

sw(𝑎∗𝑖 )
𝑑

.

Summing this over all iterations and using linearity of expectation, we get that

𝑘∑︁
𝑖=0

E[sw(𝑎𝑖 )] ⩾
𝑘∑︁
𝑖=0

sw(𝑎∗𝑖 ) /𝑑

=⇒ sw(𝐴∗) /E[sw(𝑆)] ⩽ 𝑑. □
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F PROOFS FROM SECTION 5.1 (𝑘-APPROVALS)
F.1 Proof of Proposition 2
Proposition 2 (LB, 1-app, Deterministic). For 1-approval ballot format, every deterministic rule 𝑓

has distortion

dist1-app (𝑓 ) ∈ Ω

(
𝑚2

𝛾min

)
.

Proof. We take𝑚 to be sufficiently large. Consider an instance with
𝑚
2
alternatives 𝑎1, . . . , 𝑎𝑚/2

of cost 1 and
𝑚
2
alternatives 𝑏1, . . . , 𝑏𝑚/2 of cost

2

𝑚
, and all the voters have the same PS-value of

𝛾 = 𝛾min. Suppose
2𝑛
𝑚

voters vote for each 𝑎𝑖 .

If a PB rule picks the bundle 𝑏1, . . . , 𝑏𝑚/2, then consider the instance where every voter assigns a

value of 1 to each 𝑎𝑖 and a value of 0 to each 𝑏𝑖 . This is consistent with the input, and results in

infinite distortion.

Instead, suppose the PB rule, without the loss of generality, picks 𝑎𝑚/2. Then, suppose that every
voter who votes for 𝑎𝑚/2 gives it a value of 𝛾

𝑚−2
𝑚−2𝛾min

, and everything else a value of 0, and suppose

that all other voters give their top choice a value of 1, the 𝑏𝑖 a value of
𝑚−𝛾 (𝑚−2)

𝑚−2𝛾 , and everything

else a value of zero.

Then, sw(𝑏𝑖 ) =
𝑚−𝛾 (𝑚−2)

𝑚−2𝛾 · 𝑚−2
𝑚

· 𝑛 for all 𝑖 from 1 to
𝑚
2
, and sw(𝑎𝑖 ) = 2𝑛

𝑚
for 𝑖 ≠ 𝑚

2
with

sw(𝑎𝑚/2) = 2𝑛
𝑚

· 𝛾 𝑚−2
𝑚−2𝛾 .

Then, the utilities for voters 𝑖 who vote for 𝑎𝑚/2 are consistent as

𝑣𝑖 (𝑎𝑚/2) = (1 − 𝛾) 𝑚 − 2

𝑚 − 2𝛾
+ 𝛾 𝑚 − 2

𝑚 − 2𝛾

2

𝑚

=
𝑚 − 2

𝑚 − 2𝛾

(
1 − 𝛾

𝑚 − 2

𝑚

)
=

𝑚 − 2

𝑚 − 2𝛾

𝑚 − 𝛾 (𝑚 − 2)
𝑚

⩾ 𝛾
𝑚 − 𝛾 (𝑚 − 2)

𝑚 − 2𝛾

𝑚 − 2

𝑚
= 𝑣𝑖 (𝑏 𝑗 )

for all 𝑏 𝑗 , where the last inequality holds because𝑚 ⩾ 𝑚 − 2𝛾 . Similarly,

𝑣𝑖 (𝑎𝑚/2) = (1 − 𝛾) 𝑚 − 2

𝑚 − 2𝛾
+ 𝛾 𝑚 − 2

𝑚 − 2𝛾

2

𝑚

=
𝑚 − 2

𝑚 − 2𝛾

𝑚 − 𝛾 (𝑚 − 2)
𝑚

⩾ 𝛾
2

𝑚
= 𝑣𝑖 (𝑎 𝑗 )

for all 𝑎 𝑗 ≠ 𝑎𝑚/2, where the last inequality holds for sufficiently large 𝑚, so 𝑎𝑚/2 is indeed the

alternative of highest value.
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The utilities of voters 𝑖 who vote for 𝑎 𝑗 ≠ 𝑎𝑚/2 is consistent as:

𝑣𝑖 (𝑏𝑖 ) = (1 − 𝛾)𝑚 − 𝛾 (𝑚 − 2)
𝑚 − 2𝛾

+ 𝛾𝑚 − 𝛾 (𝑚 − 2)
𝑚 − 2𝛾

· 𝑚 − 2

𝑚

=
𝑚 − 𝛾 (𝑚 − 2)

𝑚 − 2𝛾

(
1 − 𝛾 + 𝛾𝑚 − 2

𝑚

)
=
𝑚 − 𝛾 (𝑚 − 2)

𝑚

= (1 − 𝛾) + 𝛾 · 2
𝑚

= 𝑣𝑖 (𝑎 𝑗 )

for all 𝑏𝑖 . And 𝑣𝑖 (𝑎 𝑗 ) ⩾ 𝑣𝑖 (𝑎𝑘 ) for all 𝑘 ≠ 𝑗 as sw(𝑎𝑘 ) ⩽ sw(𝑎 𝑗 ) and voter 𝑖 gives 𝑎𝑘 zero utility. So,

𝑎 𝑗 is indeed the highest ranking alternative.

But, the distortion we get is:∑
𝑖 sw(𝑏𝑖 )

sw(𝑎𝑚/2)
=
𝑚

2

· 𝑚 − 𝛾 (𝑚 − 2)
𝑚 − 2𝛾

· 𝑛 ·
(
2𝑛

𝑚
· 𝛾 𝑚 − 2

𝑚 − 2𝛾

)−1
=
𝑚2

4

· 𝑚 − 𝛾 (𝑚 − 2)
𝛾 (𝑚 − 2)

=
𝑚2

4

·
(
1

𝛾
· 𝑚

𝑚 − 2

− 1

)
⩾

𝑚2

4

· 1 − 𝛾

𝛾
,

as claimed. □

G PROOFS FROM SECTION 5.2 (KNAPSACK)
G.1 Proof of Theorem 9
Theorem 9 (LB, knap, Randomized). For knapsack ballot format, every randomized rules 𝑓 has

distortion

distknap (𝑓 ) ⩾ 𝑚(1 − 𝛾min) + 𝛾min .

Proof. Formally, consider a case where 𝑛 is divisible by𝑚, all the voters have the same PS-value

of 𝛾 = 𝛾min, and every alternative 𝑎 ∈ 𝐴 has a cost of 𝑐𝑎 = 1. In this case, each vote consists of

exactly one alternative. For any alternative 𝑎 ∈ 𝐴, let 𝑁𝑎 be the set of voters who vote for alternative

𝑎. Choose the input profile ®𝜌 so that 𝑛/𝑚 voters vote for each alternative so that |𝑁𝑎 | = 𝑛
𝑚

for all

𝑎 ∈ 𝐴. Our randomized voting rule 𝑓 must pick some alternative 𝑎∗ with probability at most 1/𝑚.

Suppose that all voters in 𝑁𝑎∗ have a utility of
𝑚 (1−𝛾 )+𝛾

𝛾
for 𝑎∗ and utility zero for everything

else. Moreover, voters in 𝑁𝑎 with 𝑎 ≠ 𝑎∗ have utility 1 for 𝑎 and zero utility for the rest of the

alternatives. We can see that the social welfare of 𝑎∗ is 𝑚 (1−𝛾 )+𝛾
𝛾

· 𝑛
𝑚
, and the social welfare of any

other alternative is
𝑛
𝑚
.

First of all, we have to make sure that this utility matrix and PS-vector yield a value matrix

consistent with the input profile. For any 𝑎 ≠ 𝑎∗ and 𝑖 ∈ 𝑁𝑎 we have:

𝑣𝑖 (𝑎∗) = 𝛾
𝑚(1 − 𝛾) + 𝛾

𝛾
· 1
𝑚

=
𝑚(1 − 𝛾) + 𝛾

𝑚
= (1 − 𝛾) + 𝛾

𝑚

= 𝑣𝑖 (𝑎).
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Furthermore, for voter 𝑖 ∈ 𝑁𝑎∗ and any 𝑎 ≠ 𝑎∗ as:

𝑣𝑖 (𝑎∗) = (1 − 𝛾)𝑚(1 − 𝛾) + 𝛾
𝛾

+ 𝛾𝑚(1 − 𝛾) + 𝛾
𝛾

· 1
𝑚

=

(
1 − 𝛾

𝑚 − 1

𝑚

)
𝑚(1 − 𝛾) + 𝛾

𝛾

=
𝑚 − 𝛾 (𝑚 − 1)

𝑚
· 𝑚(𝑚 − 𝛾) + 𝛾

𝛾

=
𝛾

𝑚
· (1 − 𝛾)𝑚 + 𝛾

𝛾
· 𝑚(𝑚 − 𝛾) + 𝛾

𝛾

⩾
𝛾

𝑚
= 𝑣𝑖 (𝑎),

where the last inequality follows from the fact that 𝛾 ⩽ 1. That means the value matrix is consistent

with the input profile for all the voters.

After that, we can see the distortion that the rule incurs. We could have gotten a utility of

𝑛
𝑚

· 𝑚 (1−𝛾 )+𝛾
𝛾

by choosing 𝑎∗, but instead, we got the expected utility of the following

E𝑎∼𝑓 ( ®𝜌,𝑐 ) [sw(𝑎)] ⩽
1

𝑚
sw(𝑎∗) + 𝑚 − 1

𝑚
· 𝑛
𝑚

=
1

𝑚
· 𝑛
𝑚

· 𝑚(1 − 𝛾) + 𝛾
𝛾

+ 𝑚 − 1

𝑚
· 𝑛
𝑚

= 𝑛

(
𝑚(1 − 𝛾) + 𝛾 + (𝑚 − 1)𝛾

𝑚2𝛾

)
=

𝑛

𝛾𝑚
,

and so the distortion is at least:

distknap (𝑓 , ®𝜌, 𝑐) =
sw(𝑎∗)

E𝑎∼𝑓 ( ®𝜌,𝑐 ) [sw(𝑎)]

⩾

𝑛
𝑚

· 𝑚 (1−𝛾min )+𝛾min

𝛾min

𝑛
𝛾min𝑚

=𝑚(1 − 𝛾min) + 𝛾min.

□

G.2 Knapsack for Committee Selection
We can improve the analysis of the knapsack voting when all alternatives have the same cost.

Theorem 19. We can get a distortion of 1 + 𝑚
2
+ 1−𝛾min

𝛾min

𝑚2
in the deterministic knapsack setting for

𝑚/2-multiwinner elections (or equivalently when 𝑐𝑎 = 2

𝑚
for all 𝑎 ∈ 𝐴).

Proof. Recall the notation used in the proof of Theorem 10. For any subset of alternatives 𝑆 ⊆ 𝐴,

let 𝑛𝑆 :=
∑

𝑖∈𝑁 I(𝑆 ⊆ 𝜌𝑖 ) be the number of voters whose knapsack set contains 𝑆 . We use shorthand

𝑛𝑎 := 𝑛{𝑎} and 𝑛𝑎,𝑏 := 𝑛{𝑎,𝑏} for all 𝑎, 𝑏 ∈ 𝐴. Then, informally, 𝑛𝑎,𝑏 is the number of voters who vote

for both 𝑎 and 𝑏.

The voting rule we will use is as follows: assign a plurality score to each alternative, where the

score is simply the number of times each alternative appears.
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Pick the𝑚/2 alternatives with the largest plurality score, 𝐴. Indeed, every alternative can appear

at most 𝑛 times, as every voter can vote for them only once. Therefore, in the worst case, if the top

𝑚/2− 1 alternatives appear 𝑛 times there must remain 𝑛𝑚/2−𝑛(𝑚/2− 1) = 𝑛 appearances of other

alternatives. By the pigeonhole principle from here, the remaining plurality winner must be chosen

𝑛/(𝑚/2+1) > 𝑛/𝑚 times. Thus, the minimum number of times a plurality winner can appear is𝑛/𝑚.

Moreover, because 𝑛𝑎 > 𝑛𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∉ 𝐴, and
∑

𝑎∈𝐴 𝑛𝑎 +
∑

𝑏∉𝐴 𝑛𝑏 =𝑚𝑛/2, we get that
2

∑
𝑎∈𝐴 𝑛𝑎 ⩾ 𝑚𝑛/2 and so

∑
𝑎∈𝐴 𝑛𝑎 ⩾ 𝑚𝑛/4.

Then, let 𝐴∗
be the optimal set of alternatives. Note then that:

sw(𝐴∗,𝑈 )
sw(𝐴,𝑈 ) =

∑
𝑎∗∈𝐴∗ sw(𝑎∗,𝑈 )∑
𝑎∈𝐴 sw(𝑎,𝑈 )

=

∑
𝑎∗∈𝐴∗∩𝐴 sw(𝑎∗,𝑈 )∑

𝑎∈𝐴 sw(𝑎,𝑈 ) +
∑

𝑎∗∈𝐴∗\𝐴 sw(𝑎∗,𝑈 )∑
𝑎∈𝐴 sw(𝑎,𝑈 )

⩽ 1 +
∑︁

𝑎∗∈𝐴∗\𝐴

sw(𝑎∗,𝑈 )∑
𝑎∈𝐴 sw(𝑎,𝑈 ) . (2)

We will show that for all 𝑎∗ ∈ 𝐴∗ \𝐴, there exists some 𝑎 ∈ 𝐴 such that:

sw(𝑎∗)
sw(𝑎) ⩽ 2

1 − 𝛾min

𝛾min

𝑚 + 1,

by considering two cases:

(1) Suppose that for all 𝑎∗ ∈ 𝐴∗ \ 𝐴, there exists some 𝑎 ∈ 𝐴 such that 𝑛𝑎,𝑎∗/𝑛𝑎 ⩽ 1/2. Then,
𝑛𝑎 − 𝑛𝑎,𝑎∗ ⩾ 𝑛𝑎/2 ⩾ 𝑛/2𝑚. Therefore, by Lemma 1:

sw(𝑎∗)
sw(𝑎) ⩽ 2

1 − 𝛾min

𝛾min

𝑚 + 1.

(2) Suppose that for some 𝑎∗ ∈ 𝐴∗ \𝐴, and for all 𝑎 ∈ 𝐴, 𝑛𝑎,𝑎∗/𝑛𝑎 > 1/2. Let 𝑎max = argmax𝑎∈𝐴𝑛𝑎
and 𝑎min = argmin𝑎∈𝐴𝑛𝑎 . Then, in particular,

𝑛𝑎max
< 2𝑛𝑎max,𝑎

∗

⩽ 2𝑛𝑎∗

⩽ 2𝑛𝑎min
,

where the last equality holds because 𝑎min is a plurality winner, and 𝑎∗ isn’t
Since (𝑚/2)𝑛𝑎max

⩾
∑

𝑎∈𝐴 𝑛𝑎 ⩾ 𝑛𝑚/4, 𝑛𝑎max
⩾ 𝑛/2 and so 𝑛𝑎min

⩾ 𝑛/4. Therefore, we can
improve the lower bound for plurality winners: for all 𝑎 ∈ 𝐴, 𝑛𝑎 ⩾ 𝑛/4.

By Lemma 6 below, we know that for all 𝑎∗ ∈ 𝐴∗ \ 𝐴, there exists some 𝑎 ∈ 𝐴 such that

𝑛𝑎,𝑎∗/𝑛𝑎 ⩽ (𝑚−2)/𝑚. Therefore, 𝑛𝑎 −𝑛𝑎,𝑎∗ ⩾ 2𝑛𝑎/𝑚 ⩾ 𝑛/2𝑚. Thus, by Lemma 1 in [Flanigan

et al., 2023]:

sw(𝑎∗)
sw(𝑎) ⩽ 2

1 − 𝛾min

𝛾min

𝑚 + 1.

From here we can prove an 𝑚2
bound easily by taking 𝑎∗

max
= argmax𝑎∗∈𝐴∗sw(𝑎∗,𝑈 ). Then,

continuing off of (2), and using the fact that there exists some 𝑎 ∈ 𝐴 such that
sw(𝑎∗

max
,𝑈 )

sw(𝑎,𝑈 ) ⩽



Mark Bedaywi, Bailey Flanigan, Mohamad Latifian, and Nisarg Shah 39

2
1−𝛾min

𝛾min

𝑚 + 1:

sw(𝐴∗,𝑈 )
sw(𝐴,𝑈 ) ⩽ 1 + 𝑚

2

·
sw(𝑎∗

max
,𝑈 )∑

𝑎∈𝐴 sw(𝑎,𝑈 )

⩽ 1 + 𝑚

2

·
sw(𝑎∗

max
,𝑈 )

sw(𝑎,𝑈 )

⩽ 1 + 1 − 𝛾min

𝛾min

𝑚2 + 𝑚

2

,

as claimed! □

Lemma 6. When 𝐴∗
is the optimal subset and 𝐴 is the subset chosen by the repeated plurality rule,

for all 𝑎∗ ∈ 𝐴∗ \𝐴, there exists some 𝑎 ∈ 𝐴 such that:

𝑁 (𝑎, 𝑎∗)
𝑁 (𝑎) ⩽ (𝑚 − 2)/𝑚.

Proof. Note that

∑
𝑎∈𝐴 𝑁 (𝑎, 𝑎∗) is the number of times a voter votes for some alternative and 𝑎∗.

Each voter can vote for at most𝑚/2 alternatives. Since there are then at most𝑚/2 − 1 alternatives

in 𝐴 that any voter who votes for 𝑎∗ could have voted for:∑︁
𝑎∈𝐴

𝑁 (𝑎, 𝑎∗) ⩽ 𝑁 (𝑎∗) (𝑚/2 − 1) ⩽ 𝑁 (𝑎∗) · 𝑚 − 2

2

.

From here, let 𝑎min = argmin𝑎∈𝐴𝑁 (𝑎, 𝑎∗). Then, substituting this into the inequality above, and

using that |𝐴| = 𝑚
2
:

𝑚

2

𝑁 (𝑎min, 𝑎
∗) ⩽ 𝑁 (𝑎∗) · 𝑚 − 2

2

.

Since 𝑁 (𝑎∗) ⩽ 𝑁 (𝑎min) as 𝑎∗ is not in 𝐴 and therefore must occur at most as many times as any

plurality winner,

𝑚

2

𝑁 (𝑎min, 𝑎
∗) ⩽ 𝑁 (𝑎min) ·

𝑚 − 2

2

,

and so finally

𝑁 (𝑎min, 𝑎
∗)

𝑁 (𝑎min)
⩽

𝑚 − 2

𝑚
,

as desired! □
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